Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
ZHANG Pengli, WU Liya, YANG Zongzheng, et al. Preparation of modified MXene material and its adsorption performance for Sr2+[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5678-5691. doi: 10.13801/j.cnki.fhclxb.20221222.001
Citation: ZHANG Pengli, WU Liya, YANG Zongzheng, et al. Preparation of modified MXene material and its adsorption performance for Sr2+[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5678-5691. doi: 10.13801/j.cnki.fhclxb.20221222.001

Preparation of modified MXene material and its adsorption performance for Sr2+

doi: 10.13801/j.cnki.fhclxb.20221222.001
Funds:  The Foundation of Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization (BCERE201902); Sub Project of National Science and Technology Major Projects (2017 ZX07107-001); Scientific Research Program of Tianjin Municipal Education Commission (Natural Science) (2019 KJ225)
  • Received Date: 2022-10-21
  • Accepted Date: 2022-12-10
  • Rev Recd Date: 2022-11-29
  • Available Online: 2022-12-26
  • Publish Date: 2023-10-15
  • Ti3CNTx/TMAOH was prepared when tetramethylammonium hydroxide (TMAOH) was selected as the intercalating agent. Adsorption performance of Ti3CNTx/TMAOH on Sr2+ in simulated radioactive wastewater was evaluated. The synthesized Ti3CNTx/TMAOH was characterized by SEM-EDS, XRD, BET and FTIR. In the batch experiment, the effects of the dosage of adsorbent Ti3CNTx/TMAOH, time, pH and competitive ions on Sr2+ removal were investigated. The results show that the removal rate of Sr2+ is 99.28% when the dosage is 1.0 g·L−1, pH is 6, and the time is 10 min. The inhibition order of competitive ions is Ca2+$ \text{ > > } $Mg2+$ \text{ > } $K+$ \text{ > } $Na+$ \text{ > } $Cs+. After four adsorption-desorption cycles, the Sr2+ removal rate is 69.56%. The adsorption is consistent with the pseudo-second-order kinetic. The adsorption isotherm data conforms to the Redlich-Peterson (R-P) model. 93.80% and 68.49% Sr2+ can be removed in tap water and lake water, respectively. Sr2+ is adsorbed by Ti3CNTx/TMAOH via ion exchange, surface chelation, electrostatic adsorption and interlayer interception.

     

  • loading
  • [1]
    LIU F F, ZHOU A G, CHEN J F, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties[J]. Applied Surface Science,2017,416:781-789. doi: 10.1016/j.apsusc.2017.04.239
    [2]
    杨挺. 核电站化学废水的处理技术浅析[J]. 科技视界, 2019(1):212-213, 216. doi: 10.19694/j.cnki.issn2095-2457.2019.01.092

    YANG Ting. Treatment technology of chemical wastewater in nuclear power station[J]. Scientific and Technological Horizon,2019(1):212-213, 216(in Chinese). doi: 10.19694/j.cnki.issn2095-2457.2019.01.092
    [3]
    WANG Y, NIU B, ZHANG X, et al. Review—Ti3C2Tx MXene: An emerging two-dimensional layered material in water treatment[J]. ECS Journal of Solid State Science and Technology,2021,10(4):047002. doi: 10.1149/2162-8777/abf2de
    [4]
    HE X, JIN S, MIAO L, et al. A 3D hydroxylated MXene/carbon nanotubes composite as scaffold for dendrite-free sodium-metal electrodes[J]. Angewandte Chemie,2020,59(38):16705-16711. doi: 10.1002/anie.202006783
    [5]
    YAGHOUB M. MXenes and other 2D nanosheets for modification of polyamide thin film nanocomposite membranes for desalination[J]. Separation and Purification Technology,2022,289:120777. doi: 10.1016/j.seppur.2022.120777
    [6]
    HWANG S K, KANG S M, RETHINASABAPATHY M, et al. MXene: An emerging two-dimensional layered material for removal of radioactive pollutants[J]. Chemical Engineering Journal,2020,397:125428. doi: 10.1016/j.cej.2020.125428
    [7]
    LU M, HAN W, LI H, et al. There is plenty of space in the MXene layers: The confinement and fillings[J]. Journal of Energy Chemistry,2020,48:344-363. doi: 10.1016/j.jechem.2020.02.032
    [8]
    IBRAHIM Y, KASSAB A, EID K, et al. Unveiling fabrication and environmental remediation of MXene-based nanoarchitectures in toxic metals removal from wastewater: Strategy and mechanism[J]. Nanomaterials,2020,10(5):885-914. doi: 10.3390/nano10050885
    [9]
    LI S, WANG L, PENG J, et al. Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution[J]. Chemical Engineering Journal,2019,366:192-199. doi: 10.1016/j.cej.2019.02.056
    [10]
    RETHINASABAPATHY M, HWANG K S, KANG S M, et al. Amino-functionalized POSS nanocage-intercalated titanium carbide (Ti3C2Tx) MXene stacks for efficient cesium and strontium radionuclide sequestration[J]. Journal of Hazardous Materials,2021,418:126315. doi: 10.1016/j.jhazmat.2021.126315
    [11]
    WANG L, TAO W, YUAN L, et al. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment[J]. Chemical Communications,2017,53(89):12084-12087. doi: 10.1039/C7CC06740B
    [12]
    ZHANG Z G, GU P, ZHANG M D, et al. Synthesis of a robust layered metal sulfide for rapid and effective removal of Sr2+ from aqueous solutions[J]. Chemical Engineering Journal,2019,372:1205-1215. doi: 10.1016/j.cej.2019.04.193
    [13]
    QADA E, ALLEN S J, WALKER G M. Adsorption of basic dyes from aqueous solution onto activated carbons[J]. Chemical Engineering Journal,2008,135(3):174-184. doi: 10.1016/j.cej.2007.02.023
    [14]
    YU B, YUEN A, XU X, et al. Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability[J]. Journal of Hazardous Materials,2021,401:123342. doi: 10.1016/j.jhazmat.2020.123342
    [15]
    DENG S B, BAI R B. Aminated polyacrylonitrile fibers for humic acid adsorption: Behaviors and mechanisms[J]. Environmental Science & Technology,2003,37(24):5799-5805.
    [16]
    吴刚. 材料结构表征及应用[M]. 北京: 化学工业出版社, 2001: 15-21.

    WU Gang. Characterization and application of material structure[M]. Beijing: Chemical Industry Press, 2001: 15-21(in Chinese).
    [17]
    LIN H, CHEN L, LU X, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction[J]. Science China Materials,2019,62(5):662-670. doi: 10.1007/s40843-018-9378-3
    [18]
    XU G, WANG X, GONG S, et al. Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption[J]. Nanotechnology,2018,29(35):355201. doi: 10.1088/1361-6528/aac8f6
    [19]
    QIAN A, HYEON S E, SEO J Y, et al. Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (T—O, F, OH) MXene film electrodes[J]. Electrochimica Acta,2018,266:86-93. doi: 10.1016/j.electacta.2018.02.019
    [20]
    DU F, TANG H, PAN L M, et al. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries[J]. Electrochimica Acta,2017,235:690-699. doi: 10.1016/j.electacta.2017.03.153
    [21]
    ZHANG M D, GU P, YAN S, et al. Na/Zn/Sn/S (NaZTS): Quaternary metal sulfide nanosheets for efficient adsorption of radioactive strontium ions[J]. Chemical Engineering Journal,2020,379:122227. doi: 10.1016/j.cej.2019.122227
    [22]
    SHAHZAD A, OH J M, RASOOL K, et al. Strontium ions capturing in aqueous media using exfoliated titanium aluminum carbide (Ti2AlC MAX phase)[J]. Journal of Nuclear Materials,2021,549:152916. doi: 10.1016/j.jnucmat.2021.152916
    [23]
    MU W J, DU S Z, YU Q H, et al. Improving barium ion adsorption on two-dimensional titanium carbide by surface modification[J]. Dalton Transactions,2018,47(25):8375-8381. doi: 10.1039/C8DT00917A
    [24]
    SHAHZAD A, NAWAZ M, MOZTAHIDA M, et al. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions[J]. Chemical Engineering Journal,2019,368:400-408. doi: 10.1016/j.cej.2019.02.160
    [25]
    ZHANG L, WEI J Y, ZHAO X, et al. Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate[J]. Chemical Engineering Journal,2016,302:733-743. doi: 10.1016/j.cej.2016.05.040
    [26]
    WHITE D A, LABAYRU R. Synthesis of a manganese dioxide-silica hydrous composite and its properties as a sorption material for strontium[J]. Industrial and Engineering Chemistry Research,1991,30(1):207-210. doi: 10.1021/ie00049a031
    [27]
    WEN T, WU X L, LIU M C, et al. Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites[J]. Dalton Transactions,2014,43(20):7464-7472. doi: 10.1039/c3dt53591f
    [28]
    DING N, KANATZIDIS M G. Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide[J]. Nature Chemistry,2010,2(3):187-191. doi: 10.1038/nchem.519
    [29]
    MENG R, CHEN T, ZHANG Y, et al. Development, modification, and application of low-cost and available biochar derived from corn straw for the removal of vanadium (V) from aqueous solution and real contaminated groundwater[J]. RSC Advances,2018,8(38):21480-21494. doi: 10.1039/C8RA02172D
    [30]
    DENG S B, YU G, XIE S H, et al. Enhanced adsorption of arsenate on the aminated fibers: Sorption behavior and uptake mechanism[J]. Langmuir,2008,24(19):10961-10967. doi: 10.1021/la8023138
    [31]
    FARD A K, MCKAY G, CHAMOUN R, et al. Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent[J]. Chemical Engineering Journal,2017,317:331-342. doi: 10.1016/j.cej.2017.02.090
    [32]
    XU F J, WANG Z H, YANG W T. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules[J]. Biomaterials,2010,31(12):3139-3147. doi: 10.1016/j.biomaterials.2010.01.032
    [33]
    DENG S, ZHENG Y Q, XU F J, et al. Highly efficient sorption of perfluorooctane sulfonate and perfluorooctanoate on a quaternized cotton prepared by atom transfer radical polymerization[J]. Chemical Engineering Journal,2012,193-194:154-160. doi: 10.1016/j.cej.2012.04.005
    [34]
    ZHANG G, WANG T, XU Z, et al. Synthesis of amino-functionalized Ti3C2Tx MXene by alkalization-grafting modification for efficient lead adsorption[J]. Chemical Communications,2020,56(76):11283-11286. doi: 10.1039/D0CC04265J
    [35]
    CHENG Z, ZHU X, SHI Z L, et al. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization[J]. Industrial & Engineering Chemistry Research,2005,44(18):7098-7104.
    [36]
    ZHANG P, WANG L, HUANG Z, et al. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption[J]. ACS Applied Materials & Interfaces,2020,12(13):15579-15587.
    [37]
    CHEN S, XIANG Y, BANKS M K, et al. Polyoxometalate-coupled MXene nanohybrid via poly(ionic liquid) linkers and its electrode for enhanced supercapacitive performance[J]. Nanoscale,2018,10(42):20043-20052. doi: 10.1039/C8NR05760E
    [38]
    KIM S J, KOH H J, REN C E, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio[J]. ACS Nano,2018,12(2):986-993. doi: 10.1021/acsnano.7b07460
    [39]
    WANG H, CUI H, SONG X, et al. Facile synthesis of heterojunction of MXenes/TiO2 nanoparticles towards enhanced hexavalent chromium removal[J]. Journal of Colloid and Interface Science,2020,561:46-57. doi: 10.1016/j.jcis.2019.11.120
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(6)

    Article Metrics

    Article views (623) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return