Volume 40 Issue 8
May  2023
Turn off MathJax
Article Contents
WANG Pengjia, PENG Baoying, WU Wei, et al. Synthesis of W-doped Cr2O3 thin films and their application in isobutylene sensing[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4549-4557. doi: 10.13801/j.cnki.fhclxb.20221209.001
Citation: WANG Pengjia, PENG Baoying, WU Wei, et al. Synthesis of W-doped Cr2O3 thin films and their application in isobutylene sensing[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4549-4557. doi: 10.13801/j.cnki.fhclxb.20221209.001

Synthesis of W-doped Cr2O3 thin films and their application in isobutylene sensing

doi: 10.13801/j.cnki.fhclxb.20221209.001
Funds:  Natural Science Foundation of Ningxia (2022 AAC03344); Beijing Municipal Education Commission Project (KM202011232012); National Natural Science Foundation of China (51405026)
  • Received Date: 2022-09-14
  • Accepted Date: 2022-11-30
  • Rev Recd Date: 2022-11-07
  • Available Online: 2022-12-14
  • Publish Date: 2023-08-15
  • In order to effectively monitor isobutylene gas, Cr2O3 and W-doped Cr2O3 (W/Cr2O3) films were successfully synthesized via aerosol-assisted chemical vapor deposition (AACVD) technique on the surface of alumina substrate. The microstructure, crystal structure, and elemental binding valence of Cr2O3 and W/Cr2O3 films were analyzed by SEM, TEM, XRD and XPS. The results show that Cr2O3 film is composed of nanoparticles with the particle size of about 50 nm, a thickness of about 20 μm, and its structure is relatively loose. However, the thin film obtained by W doping Cr2O3 has a compact structure, and the size of nanoparticles is about 15 nm, which is remarkably reduced due to the introduction of W into the Cr2O3 crystal lattice. Both Cr2O3 and W/Cr2O3 films have a single hexagonal crystalline structure. The gas sensitivity test results show that the sensitivity of the gas sensor based on W/Cr2O3 film towards 2×10–5 isobutene increases from 1.11 to 3.55 compared with the Cr2O3 gas sensor at 400℃, and W/Cr2O3 gas sensor exhibits good stability, moisture resistance and gas selectivity.

     

  • loading
  • [1]
    SEIYAMA T, KATO A, FUJIISHI K, et al. A new detector for gaseous components using semiconductive thin films[J]. Analytical Chemistry,1962,34(11):1502-1503. doi: 10.1021/ac60191a001
    [2]
    CHEN L, YU Q W, PAN C Y, et al. Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review[J]. Talanta,2022,246:123527. doi: 10.1016/j.talanta.2022.123527
    [3]
    LI Q T, ZENG W, LI Y Q. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments[J]. Sensors and Actuators B: Chemical,2022,359:131579. doi: 10.1016/j.snb.2022.131579
    [4]
    GUTH U, VONAU W, ZOSEL J. Recent developments in electrochemical sensor application and technology—A review[J]. Measurement Science and Technology,2009,20(4):042002. doi: 10.1088/0957-0233/20/4/042002
    [5]
    吴煜霞, 杜海英, 张钊睿, 等. 同轴异质In2O3/SnO2复合纤维的构筑及其甲醛敏感性能[J]. 复合材料学报, 2022, 39(5):2249-2257.

    WU Yuxia, DU Haiying, ZHANG Zhaorui, et al. Fabrication of In2O3/SnO2-coaxial-electrospinning fiber and investigation on its formaldehyde sensing properties[J]. Acta Materiae Compositae Sinica,2022,39(5):2249-2257(in Chinese).
    [6]
    TANG H Y, SACCO L N, VOLLEBREGT S, et al. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: Mechanisms, applications, and perspectives[J]. Journal of Materials Chemistry A,2020,8(47):24943-24976. doi: 10.1039/D0TA08190F
    [7]
    LEI W, SI W M, XU Y J, et al. Conducting polymer compo-sites with graphene for use in chemical sensors and biosensors[J]. Microchimica Acta,2014,181(7):707-722.
    [8]
    KIM M, LEE Y. A comprehensive review of gas sensors using carbon materials[J]. Journal of Nanoscience & Nanotechnology,2016,16(5):4310.
    [9]
    SUN Y H, WANG J, DU H Y, et al. Formaldehyde gas sensors based on SnO2/ZSM-5 zeolite composite nanofibers[J]. Journal of Alloys and Compounds,2021,868:159140. doi: 10.1016/j.jallcom.2021.159140
    [10]
    KIM J W, PORTE Y, KO K Y, et al. Micropatternable double-faced ZnO nanoflowers for flexible gas sensor[J]. ACS Applied Materials & Interfaces,2017,9(38):32876-32886.
    [11]
    LU S H, ZHANG Y Z, LIU J Y, et al. Sensitive H2 gas sensors based on SnO2 nanowires[J]. Sensors and Actuators B: Chemical,2021,345:130334. doi: 10.1016/j.snb.2021.130334
    [12]
    WANG Q, CHENG X, WANG Y R, et al. Sea urchins-like WO3 as a material for resistive acetone gas sensors[J]. Sensors and Actuators B: Chemical,2022,355:131262. doi: 10.1016/j.snb.2021.131262
    [13]
    BAI J L, KONG Y, LIU Z L, et al. Ag modified Tb-doped double-phase In2O3 for ultrasensitive hydrogen gas sensor[J]. Applied Surface Science,2022,583:152521. doi: 10.1016/j.apsusc.2022.152521
    [14]
    SONG B Y, ZHANG X F, HUANG J, et al. Porous Cr2O3 architecture assembled by nano-sized cylinders/ellipsoids for enhanced sensing to trace H2S gas[J]. ACS Applied Materials & Interfaces,2022,14(19):22302-22312.
    [15]
    NAKATE U T, LEE G H, AHMAD R, et al. Nano-bitter gourd like structured CuO for enhanced hydrogen gas sensor application[J]. International Journal of Hydrogen Energy,2018,43(50):22705-22714. doi: 10.1016/j.ijhydene.2018.09.162
    [16]
    LI C Y, CHOI P G, KIM K S, et al. High performance acetone gas sensor based on ultrathin porous NiO nanosheet[J]. Sensors and Actuators B: Chemical,2022,367:132143. doi: 10.1016/j.snb.2022.132143
    [17]
    DING C, MA Y L, LAI X Y, et al. Ordered large-pore mesoporous Cr2O3 with ultrathin framework for formaldehyde sensing[J]. ACS Applied Materials & Interfaces,2017,9(21):18170-18177.
    [18]
    POKHREL S, NAGARAJA K S. Electrical and humidity sensing properties of chromium(III) oxide-tungsten(VI) oxide composites[J]. Sensors and Actuators B: Chemical,2003,92(1):144-150.
    [19]
    林秉群, 赵国敏, 潘明珠. 基于VOCs传感器敏感材料的研究进展[J]. 复合材料学报, 2022, 39(2):478-488.

    LIN Bingqun, ZHAO Guomin, PAN Mingzhu. Research progress of sensing materials for VOCs detection[J]. Acta Materiae Compositae Sinica,2022,39(2):478-488(in Chinese).
    [20]
    GUSHCHIN P A, LUBIMENKO V A, PETROVA D A, et al. Catalytic oligomerization of isobutylene at the boiling point of liquid nitrogen[J]. Chemical Engineering Science,2020,227:115903. doi: 10.1016/j.ces.2020.115903
    [21]
    DUTTA S, PANDEY A, LEELADHA R, et al. Growth and characterization of ultrathin TiO2-Cr2O3 nanocomposite films[J]. Journal of Alloys and Compounds,2017,696:376-381. doi: 10.1016/j.jallcom.2016.11.284
    [22]
    CAREY J, LEGESSE M, NOLAN M. Low valence cation doping of bulk Cr2O3: Charge compensation and oxygen vacancy formation[J]. The Journal of Physical Chemistry C,2016,120(34):19160-19174. doi: 10.1021/acs.jpcc.6b05575
    [23]
    BARASKAR P, CHOUHAN R, AGRAWAL A, et al. Weak ferromagnetism at room temperature in Ti incorporated Cr2O3 thin film[J]. Physica B: Condensed Matter,2019,571:36-40. doi: 10.1016/j.physb.2019.06.031
    [24]
    SHEN Y B, LI T T, ZHONG X X, et al. ppb-level NO2 sensing properties of Au-doped WO3 nanosheets synthesized from a low-grade scheelite concentrate[J]. Vacuum,2020,172:109036. doi: 10.1016/j.vacuum.2019.109036
    [25]
    ZHANG W, SHEN Y B, ZHANG J, et al. Low-temperature H2S sensing performance of Cu-doped ZnFe2O4 nanoparticles with spinel structure[J]. Applied Surface Science,2019,470:581-590. doi: 10.1016/j.apsusc.2018.11.164
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (680) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return