Volume 40 Issue 8
May  2023
Turn off MathJax
Article Contents
ZHU He, HUANG Fanglin, ZHANG Aipin, et al. Tensile properties and constitutive relation of modified polyurethane concrete at different temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4659-4669. doi: 10.13801/j.cnki.fhclxb.20221123.001
Citation: ZHU He, HUANG Fanglin, ZHANG Aipin, et al. Tensile properties and constitutive relation of modified polyurethane concrete at different temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4659-4669. doi: 10.13801/j.cnki.fhclxb.20221123.001

Tensile properties and constitutive relation of modified polyurethane concrete at different temperatures

doi: 10.13801/j.cnki.fhclxb.20221123.001
Funds:  Natural Science Foundation of Hunan Province (2021 JJ40710); Science and Technology Research and Development Plan of China Railway Development and Investment Group CO., LTD. (2021-Category B-04)
  • Received Date: 2022-09-16
  • Accepted Date: 2022-11-12
  • Rev Recd Date: 2022-10-25
  • Available Online: 2022-11-25
  • Publish Date: 2023-08-15
  • The steel bridge deck pavement materials are susceptible to damage caused by temperature, among which tensile damage is the most common. Modified polyurethane concrete is a new type of steel bridge deck pavement material. In order to study the effect of temperature on its tensile properties, uniaxial tensile experiments were carried out at −10°C, 0°C, 15°C, 40°C and 60°C. In order to ensure the success of the experiment, two kinds of experimental specimens (dumbbell-shaped specimen and dumbbell-shaped specimen with circular arc edge) were first designed. Meanwhile, a novel tensile testing fixture used to match the specimen was designed, and the experiment comparison of the two specimens was carried out. Through the uniaxial tensile experiment, the stress-strain curves were obtained and the tensile performance indexes were calculated according to the curve. The results show that using the dumbbell-shaped specimen with circular arc edge and the new tensile testing fixture has better effect. The new fixture can restrain the deformation of the fixture by adding bolts, so as to effectively reduce the stress concentration in the loading process. With the increase of temperature, the tensile strength and tensile elastic modulus of modified polyurethane concrete decrease. The peak strain, fracture energy density and tension-compression ratio all increase. The temperature related expressions of the tensile performance indexes are proposed. The uniaxial tensile constitutive relation of modified polyurethane concrete is constructed, and the calculation is in good agreement with the experimental results. The results can serve as basic references for the future engineering application of this material.

     

  • loading
  • [1]
    徐世法, 张业兴, 郭昱涛, 等. 基于贯入阻力测试系统的聚氨酯混凝土压实时机确定方法[J]. 中国公路学报, 2021, 34(7):226-235. doi: 10.3969/j.issn.1001-7372.2021.07.019

    XU Shifa, ZHANG Yexing, GUO Yutao, et al. Determination of polyurethane concrete compaction timing based on penetration resistance test system[J]. China Journal of Highway and Transport,2021,34(7):226-235(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.07.019
    [2]
    吴淑印. 钢桥面高延性水泥基材料铺装结构界面特性研究[D]. 南京: 东南大学, 2019.

    WU Shuyin. Study on interfacial characteristics of steel deck pavement with engineered cementitious composites[D]. Nanjing: Southeast University, 2019(in Chinese).
    [3]
    ZHANG K X, SUN Q S. Experimental study of reinforced concrete T-beams strengthened with a composite of prestressed steel wire ropes embedded in polyurethane cement (PSWR-PUC)[J]. International Journal of Civil Engineering,2017,16:1109-1123.
    [4]
    VIJAYARAGHAVAN J, JEEVAKKUMAR R, VENKATESAN G, et al. Influence of kaolin and dolomite as filler on bond strength of polyurethane coated reinforcement concrete[J]. Construction and Building Materials,2022,325:126675. doi: 10.1016/j.conbuildmat.2022.126675
    [5]
    刘小祥, 刘翼, 安珈璇, 等. 连续长玻璃纤维/聚氨酯复合材料的制备与力学性能[J]. 复合材料学报, 2019, 36(3):617-623.

    LIU Xiaoxiang, LIU Yi, AN Jiaxuan, et al. Preparation and mechanical properties of continuous long glass fiber/polyurethane composites[J]. Acta Materiae Compositae Sinica,2019,36(3):617-623(in Chinese).
    [6]
    HONG B, LU G Y, GAO J L. Evaluation of polyurethane dense graded concrete prepared using the vacuum assisted resin transfer molding technology[J]. Construction and Building Materials,2021,269:121340. doi: 10.1016/j.conbuildmat.2020.121340
    [7]
    ALEIS K A, LABARCA I K. Evaluation of the URETEK method & of pavement lifting: WI-02-07[R]. Washington: Wisconsin Department of Transportation, 2007.
    [8]
    HUSSAIN H K, ZHANG L Z, LIU G W. An experimental study on strengthening reinforced concrete I-beams using new material polyurethane-cement (PUC)[J]. Construction and Building Materials,2013,40:104-117. doi: 10.1016/j.conbuildmat.2012.09.088
    [9]
    雷建华, 徐斌, 何旭辉. 改性聚氨酯混凝土受压性能及本构关系研究[J]. 铁道科学与工程学报, 2023, 20(1): 278-288.

    LEI Jianhua, XU Bin, HE Xuhui. Research on compressive properties and constitutive relation of modified polyurethane concrete[J]. Journal of Railway Science and Engineering, 2023, 20(1): 278-288(in Chinese).
    [10]
    徐斌, 徐速, 胡风, 等. 一种钢桥面复合式铺装结构及铺装方法: 中国, CN109056525 B[P]. 2020-10-27.

    XU Bin, XU Su, HU Feng, et al. A composite pavement structure and method of steel deck: China, CN109056525 B[P]. 2020-10-27(in Chinese).
    [11]
    胡淑芳, 杨辉. 基于保通条件下某特大桥钢桥面铺装快速提升改造技术实践[J]. 江西建材, 2021(6):136, 138. doi: 10.3969/j.issn.1006-2890.2021.06.086

    HU Shufang, YANG Hui. Practice of rapid upgrading and reconstruction technology of steel deck pavement of a super large bridge based on the condition of communication[J]. Jiangxi Building Materials,2021(6):136, 138(in Chinese). doi: 10.3969/j.issn.1006-2890.2021.06.086
    [12]
    李博强. 沈阳市长青桥钢桥桥面铺装的对比与选用[J]. 北方交通, 2019(6):25-28.

    LI Boqiang. Comparison and selection of steel bridge deck pavement of changqing bridge in shenyang[J]. Northern Communications,2019(6):25-28(in Chinese).
    [13]
    李继宏. ECO改性聚氨酯混凝土在寒冷地区钢桥桥面铺装施工中的应用[J]. 北方交通, 2019(6):29-32.

    LI Jihong. Application of ECO modified polyurethane concrete on steel bridge deck pavement in cold area[J]. Northern Communications,2019(6):29-32(in Chinese).
    [14]
    LOOK K, HEEK P, MARK P. Direct tensile tests of supercritical steel fibre reinforced concrete[J]. Fibre Reinforced Concrete: Improvements and Innovations II,2022,36:132-142.
    [15]
    郭耀东, 刘元珍, 王文婧, 等. 玄武岩纤维特征参数对混凝土单轴受拉性能的影响[J]. 复合材料学报, 2023, 40(5):2897-2912.

    GUO Yaodong, LIU Yuanzhen, WANG Wenjing, et al. Influence of basalt fiber characteristic parameters on uniaxial tensile properties of concrete[J]. Acta Materiae Compositae Sinica,2023,40(5):2897-2912(in Chinese).
    [16]
    张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8):50-58. doi: 10.3969/j.issn.1001-7372.2015.08.007

    ZHANG Zhe, SHAO Xudong, LI Wenguang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport,2015,28(8):50-58(in Chinese). doi: 10.3969/j.issn.1001-7372.2015.08.007
    [17]
    KAMIL Z, ANDRZEJ G, SANDRA C, et al. Tensile properties of polymer repair materials-effect of test parameters[J]. Advanced Materials Research,2015,1129:445-452. doi: 10.4028/www.scientific.net/AMR.1129.445
    [18]
    WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites,2014,48:53-66. doi: 10.1016/j.cemconcomp.2013.12.015
    [19]
    DENG Z Y, LIU X R, YANG X, et al. A study of tensile and compressive properties of hybrid basalt-polypropylene fiber-reinforced concrete under uniaxial loads[J]. Structural Concrete,2021,22:396-409. doi: 10.1002/suco.202000006
    [20]
    杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11):3925-3938.

    GAO Xiaolong, WANG Junyan, GUO Junyuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositae Sinica,2021,38(11):3925-3938(in Chinese).
    [21]
    DONNINI J, DE CASOY BASALO F, CORINALDESI V, et al. Fabric-reinforced cementitious matrix behavior at high-temperature: Experimental and numerical results[J]. Composites Part B: Engineering,2017,108:108-121. doi: 10.1016/j.compositesb.2016.10.004
    [22]
    JIN H, YANG S, XU H, et al. Uniaxial tensile performance of PP-ECC: Effect of curing temperatures and fly ash contents[J]. KSCE Journal of Civil Engineering,2020,24:3435-3446. doi: 10.1007/s12205-020-0402-x
    [23]
    徐斌, 徐速, 尤其, 等. 树脂混凝土及其制备方法、钢桥面铺装结构及其施工方法: 中国, CN113666665 A[P]. 2022-04-12.

    XU Bin, XU Su, YOU Qi, et al. Resin concrete and its preparation method, steel deck pavement structure and construction method: China, CN113666665 A[P]. 2022-04-12(in Chinese).
    [24]
    胡翱翔, 梁兴文, 于婧, 等. 超高性能混凝土轴心受拉力学性能试验研究[J]. 湖南大学学报(自然科学版), 2018, 45(9):30-37.

    HU Aoxiang, LIANG Xingwen, YU Jing, et al. Experimental study of uniaxial tensile characteristics of ultra-high performance concrete[J]. Journal of Hunan University (Natural Sciences),2018,45(9):30-37(in Chinese).
    [25]
    KAMAL A, KUNIEDA M, NAOSHI U. Evaluation of crack opening performance of a repair material with strain hardening behavior[J]. Cement and Concrete Composites,2008,30:863-871. doi: 10.1016/j.cemconcomp.2008.08.003
    [26]
    中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [27]
    郝增恒, 王滔, 王民, 等. 钢桥面铺层温度场分析[J]. 公路交通科技, 2018, 35(11):36-43.

    HAO Zengheng, WANG Tao, WANG Min, et al. Analysis on temperature field of steel bridge deck pavement[J]. Jour-nal of Highway and Transportation Research and Development,2018,35(11):36-43(in Chinese).
    [28]
    徐鸥明, 向顺琳, 杨星皓. 钢桥面铺装层材料应用与发展[J]. 公路, 2022(9):44-50.

    XU Ouming, XIANG Shunlin, YANG Xinghao. Application and development of steel bridge deck pavement structure and materials[J]. Highway,2022(9):44-50(in Chinese).
    [29]
    ZHANG J, SHEN H Z, ZHANG X, et al. Experimental and theoretical investigation of mechanical behavior related to temperature, humidity and strain rate on silane-modified polyurethane sealant[J]. Polymer Testing,2021,103:107370. doi: 10.1016/j.polymertesting.2021.107370
    [30]
    CHEN X L, ZHOU J, LUO Y L, et al. Molecular dynamics simulation insight into the temperature dependence and healing mechanism of an intrinsic self-healing polyurethane elastomer[J]. Physical Chemistry Chemical Physics,2020,22:17620-17631. doi: 10.1039/D0CP03013A
    [31]
    LI J, ZHANG J W, CHEN S. Study on dynamic viscoelastic properties and constitutive model of non-water reacted polyurethane grouting materials[J]. Measurement,2021,176:109115. doi: 10.1016/j.measurement.2021.109115
    [32]
    LEI J, FENG F, XU S, et al. Study on mechanical properties of modified polyurethane concrete at different tempera-tures[J]. Applied Sciences,2022,12:3184. doi: 10.3390/app12063184
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (688) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return