Volume 40 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
WANG Hao, WANG Gui, ZHOU Xingming, et al. Oxidation behavior of high thermal conductivity mesophase-pitch-based carbon fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5189-5200. doi: 10.13801/j.cnki.fhclxb.20221117.002
Citation: WANG Hao, WANG Gui, ZHOU Xingming, et al. Oxidation behavior of high thermal conductivity mesophase-pitch-based carbon fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5189-5200. doi: 10.13801/j.cnki.fhclxb.20221117.002

Oxidation behavior of high thermal conductivity mesophase-pitch-based carbon fibers

doi: 10.13801/j.cnki.fhclxb.20221117.002
Funds:  National Natural Science Foundation of China (U21 B2067; 52202037); Special Fund for Innovative Construction Province of Hunan (2020 GK4029); Natural Science Foundation of Hunan Province China (2021 JJ40144; 2021 JJ40145); Hunan Province Scientific and Technological Talents Support Project (2022 TJ-N11); Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology (2020 B1212060049); Changsha Municipal Science and Technology Project (KQ2102005); Ten Key Technical Projects of Hunan Province (2021 GK1140)
  • Received Date: 2022-09-21
  • Accepted Date: 2022-11-06
  • Rev Recd Date: 2022-10-27
  • Available Online: 2022-11-19
  • Publish Date: 2023-09-15
  • The oxidation behaviors of the homemade high thermal conductive mesophase-pitch-based carbon fiber (CFMP) at different time and temperature were investigated using the polyacrylonitrile-based carbon fiber (M55J) as the control group. The results show that CFMP exhibits a fold radiation structure in the outer part and onion skin structure in the inner part. The CFMP has a well-developed graphite crystallite and a high degree of orientation. Oxygen atoms preferentially diffuse in the microcracks and micropores in the fold radiation carbon textures of CFMP and react with them resulting in radial cracks and localized pits. In the low temperature oxidation stage, the oxidation behaviors of the fibers are controlled by the carbon-oxygen chemical reaction. Because the active site concentration in graphite crystallite of CFMP is lower, its initial reaction temperature is higher than that of M55J, and its oxidation mass loss rate is relative lower. In the high temperature oxidation stage, the oxidation behaviors of the fibers are controlled by oxygen diffusion. The oxidation mass loss rate of CFMP is higher than that of M55J because there are more oxygen diffusion paths in the CFMP. Moreover, because there are more and larger microstructural defects in CFMP after oxidation, the strength retention rate of the CFMP is only 78%, which is lower than that of M55J (85%). This study provides certain technical and theoretical references for the structural design and actual service of high thermal conductive C/C composites.

     

  • loading
  • [1]
    SHI L Y, SESSIM M, TONKS M R, et al. High-temperature oxidation of carbon fiber and char by molecular dynamics simulation[J]. Carbon,2021,185:449-463. doi: 10.1016/j.carbon.2021.09.038
    [2]
    FUKUNAGA A, UEDA S, NAGUMO M. Air-oxidation and anodization of pitch-based carbon fibers[J]. Carbon,1999,37(7):1081-1085. doi: 10.1016/S0008-6223(98)00307-8
    [3]
    SESSIM M, SHI L Y, PHILLPOT S R, et al. Phase-field modeling of carbon fiber oxidation coupled with heat conduction[J]. Computational Materials Science,2022,204:1-17.
    [4]
    李贺军, 史小红, 沈庆凉, 等. 国内C/C复合材料研究进展[J]. 中国有色金属学报, 2019, 29(9):2142-2154. doi: 10.19476/j.ysxb.1004.0609.2019.09.15

    LI Hejun, SHI Xiaohong, SHEN Qingliang, et al. Research and development of C/C composites in China[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):2142-2154(in Chinese). doi: 10.19476/j.ysxb.1004.0609.2019.09.15
    [5]
    HUANG D, LIU Q L, ZHANG Y F, et al. Ablation behavior and thermal conduction mechanism of 3D ZrC-SiC-modified carbon/carbon composite having high thermal conductivity using mesophase-pitch-based carbon fibers and pyrocarbon as heat transfer channels[J]. Composites Part B: Engineering,2021,224:1-14.
    [6]
    HUANG D, TAN R X, LIU L, et al. Preparation and properties of the three-dimensional highly thermal conductive carbon/carbon-silicon carbide composite using the mesophase-pitch-based carbon fibers and pyrocarbon as thermal diffusion channels[J]. Journal of the European Ceramic Society,2021,41(8):4438-4446. doi: 10.1016/j.jeurceramsoc.2021.03.011
    [7]
    ZHANG X, LI X K, YUAN G M, et al. Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration[J]. Carbon,2017,114:59-69.
    [8]
    LI T Q, XU Z H, HU Z J, et al. Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system[J]. Carbon,2010,48(3):924-925. doi: 10.1016/j.carbon.2009.10.043
    [9]
    刘宇峰, 李同起, 冯志海, 等. 薄层化碳布缝合碳/碳复合材料制备与性能[J]. 复合材料学报, 2021, 38(4):1210-1222. doi: 10.13801/j.cnki.fhclxb.20200713.005

    LIU Yufeng, LI Tongqi, FENG Zhihai, et al. Preparation and properties of spreading carbon cloth stitched C/C compo-sites[J]. Acta Materiae Compositae Sinica,2021,38(4):1210-1222(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200713.005
    [10]
    YE C, HUANG D, LI B L, et al. Ablation behavior of the SiC-coated three-dimensional highly thermal conductive mesophase-pitch-based carbon-fiber-reinforced carbon matrix composite under plasma flame[J]. Materials,2019,12(17):1-15.
    [11]
    ZHUANG L, FU Q G, MA W H, et al. Oxidation protection of C/C composites: Coating development with thermally stabile SiC@PyC nanowires and an interlocking TaB2-SiC structure[J]. Corrosion Science,2019,148:307-316. doi: 10.1016/j.corsci.2018.12.024
    [12]
    王玲玲, 肖春, 王坤杰, 等. 不同制备方法下(C/C)/ZrB2-SiC复合材料的抗烧蚀性能[J]. 复合材料学报, 2019, 36(12):2878-2886.

    WANG Lingling, XIAO Chun, WANG Kunjie, et al. Ablation performance of (C/C)/ZrB2-SiC composites by different fabrication methods[J]. Acta Materiae Compositae Sinica,2019,36(12):2878-2886(in Chinese).
    [13]
    王玲玲, 闫联生, 郭春园, 等. 不同ZrC含量的(C/C)/SiC-ZrC复合材料的抗烧蚀性能[J]. 复合材料学报, 2020, 37(9):2250-2257. doi: 10.13801/j.cnki.fhclxb.20200110.003

    WANG Lingling, YAN Liansheng, GUO Chunyuan, et al. Anti-ablative property of (C/C)/SiC-ZrC composites with different ZrC content[J]. Acta Materiae Compositae Sinica,2020,37(9):2250-2257(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200110.003
    [14]
    李昭锐, 张东, 徐樑华, 等. 碳纤维形貌结构对其电化学氧化行为及其复合材料界面性能的影响[J]. 复合材料学报, 2015, 32(4):1218-1224. doi: 10.13801/j.cnki.fhclxb.20141204.002

    LI Zhaorui, ZHANG Dong, XU Lianghua, et al. Influence of carbon fiber morphology structure on electrochemical oxidation behaviors and interfacial properties of its composites[J]. Acta Materiae Compositae Sinica,2015,32(4):1218-1224(in Chinese). doi: 10.13801/j.cnki.fhclxb.20141204.002
    [15]
    徐翊桄, 靳玉伟, 张海龙, 等. 碳纤维热氧化行为及其机理[J]. 合成纤维工业, 2010, 33(6):5-7. doi: 10.3969/j.issn.1001-0041.2010.06.002

    XU Yiguang, JIN Yuwei, ZHANG Hailong, et al. Thermal oxidation behavior and mechanism of carbon fiber[J]. China Synthetic Fiber Industry,2010,33(6):5-7(in Chinese). doi: 10.3969/j.issn.1001-0041.2010.06.002
    [16]
    COCHELL T J, UNOCIC R R, GRANA-OTERO J, et al. Nanoscale oxidation behavior of carbon fibers revealed with in situ gas cell STEM[J]. Scripta Materialia,2021,199:1-6.
    [17]
    SERF P, FIGUEIREDO J L. An investigation of vapor-grown carbon fiber behavior towards air oxidation[J]. Carbon,1997,35(5):675-683. doi: 10.1016/S0008-6223(97)00023-7
    [18]
    MERINO C, BRANDL W. Oxidation behaviour and microstructure of vapour grown carbon fibres[J]. Solid State Sciences,2003,5(4):663-668. doi: 10.1016/S1293-2558(03)00039-6
    [19]
    MANOCHA L M, WARRIER A, MANOCHA S, et al. Oxidation behaviour of ribbon shape carbon fibers and their composites[J]. Materials Science and Engineering: B,2006,132(1-2):121-125.
    [20]
    DHAMI T L, MANOCHA L M, BAHL O P. Oxidation behaviour of pitch based carbon fibers[J]. Carbon,1991,29(1):51-60. doi: 10.1016/0008-6223(91)90094-Y
    [21]
    NAKAMURA K, TANABE Y, FUKUSHIMA M, et al. Analysis of surface oxidation behavior at 500℃ under dry air of glass-like carbon heat-treated from 1200 to 3000℃[J]. Materials Science and Engineering: B,2009,161(1-3):40-45. doi: 10.1016/j.mseb.2008.11.012
    [22]
    GUO W M, XIAO H N, ZHANG G J. Kinetics and mechanisms of non-isothermal oxidation of graphite in air[J]. Corrosion Science,2008,50(7):2007-2011. doi: 10.1016/j.corsci.2008.04.017
    [23]
    NAITO K, TANAKA Y, YANG J M, et al. Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers[J]. Carbon,2008,46(2):189-195. doi: 10.1016/j.carbon.2007.11.001
    [24]
    YE C, WU H, ZHU S P, et al. Microstructure of high thermal conductivity mesophase pitch-based carbon fibers[J]. New Carbon Materials,2021,36(5):980-986. doi: 10.1016/S1872-5805(21)60050-1
    [25]
    EMMERICH F G. Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers[J]. Carbon,2014,79:274-293. doi: 10.1016/j.carbon.2014.07.068
    [26]
    YUAN G M, LI X K, DONG Z J, et al. The structure and pro-perties of ribbon-shaped carbon fibers with high orientation[J]. Carbon,2014,68:426-439. doi: 10.1016/j.carbon.2013.11.019
    [27]
    马兆昆, 宁淑丽, 宋怀河. 高导热炭纤维的研究进展[J]. 北京化工大学学报:自然科学版, 2014, 41(1):1-13.

    MA Zhaokun, NING Shuli, SONG Huaihe. Recent progress in the study of carbon fibers with high thermal conducti-vity[J]. Journal of Beijing University of Chemical Technology (Natural Science),2014,41(1):1-13(in Chinese).
    [28]
    MOCHIDA I, YOON S H, TAKANO N, et al. Microstructure of mesophase pitch-based carbon fiber and its control[J]. Carbon,1996,34(8):941-956. doi: 10.1016/0008-6223(95)00172-7
    [29]
    WU H, HUANG D, YE C, et al. Engineering microstructure toward split-free mesophase pitch-based carbon fibers[J]. Journal of Materials Science,2022,57(4):2411-2423. doi: 10.1007/s10853-021-06770-9
    [30]
    HUANG D, LIU Q L, ZHANG P, et al. Thermal response of the two-directional high-thermal-conductive carbon fiber reinforced aluminum composites with low interface damage by a vacuum hot pressure diffusion method[J]. Jour-nal of Alloys and Compounds,2022,905:1-11.
    [31]
    中华人民共和国国家质量监督检验检疫总局. 中国国家标准化管理委员会. 碳纤维单丝拉伸性能的测定: GB/T 31290—2014[S]. 北京: 中国标准出版社, 2014.

    General Administration of Quality Supervision Inspection and Quarantine of the People's Republic of China. Standardization Administration of the People's Republic of China. Carbon fibre-Determination of the tensile properties of single-filament specimens: GB/T 31290—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (608) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return