Volume 40 Issue 8
May  2023
Turn off MathJax
Article Contents
LI Ke, CHEN Xiang, FAN Jiajun, et al. Experiment on RC beams strengthened with high-strength steel strand meshes and ECC under secondary load[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4670-4681. doi: 10.13801/j.cnki.fhclxb.20221102.003
Citation: LI Ke, CHEN Xiang, FAN Jiajun, et al. Experiment on RC beams strengthened with high-strength steel strand meshes and ECC under secondary load[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4670-4681. doi: 10.13801/j.cnki.fhclxb.20221102.003

Experiment on RC beams strengthened with high-strength steel strand meshes and ECC under secondary load

doi: 10.13801/j.cnki.fhclxb.20221102.003
Funds:  National Natural Science Foundation of China (U1804137; 51879243; 52108183); China Postdoctoral Science Foundation (2020 M672236; 2021 TQ0302); Science and Technology Project of Henan Provincial Department of Transportation (2021 J3)
  • Received Date: 2022-08-26
  • Accepted Date: 2022-10-22
  • Rev Recd Date: 2022-10-10
  • Available Online: 2022-11-02
  • Publish Date: 2023-08-15
  • As a new type of high performance composite material, high-strength steel wire strand (HSWS) meshes reinforced engineered cementitious composites (ECC), which makes full use of the excellent mechanical properties of HSWS meshes and ECC, has the advantages of ultra-high ductility and toughness, excellent crack-control ability and high strength. In order to explore the effect of secondary load on the flexural behavior of reinforced concrete (RC) beam strengthened with this new composite material, the bending test of RC beams strengthened with HSWS meshes reinforced ECC was conducted, considering the effects of strengthening in load-carrying state, damage degree of the original beam, and reinforcement ratio of longitudinal HSWS. The influence mechanism of secondary load on the flexural performance of strengthened RC beams was analyzed, and the influence laws of these factors on the flexural behavior of RC beams strengthened with HSWS meshes reinforced ECC in load-carrying state were explored. The results show that the flexural capacity, stiffness, ductility and toughness of RC beams strengthened with high-strength steel wire meshes reinforced ECC in load-carrying state are increased by 38%-65%, 20%-81%, 0%-18% and 33%-116%, respectively, and the crack development of RC beam can be well restrained, and the crack width can be reduced. Compared with the RC beams strengthened in unloading state, the beams strengthened in load-carrying state exhibit obvious strain hysteresis in the reinforcement layer, resulting in the worse constraint effect on the crack of the original beam, and its flexural capacity, stiffness and toughness decrease, but its ductility is improved. The flexural capacity, stiffness, ductility and toughness of the beams strengthened in load-carrying state decrease as the original beam damage degree increases, but grow as the reinforcement ratio of HSWS increases properly.

     

  • loading
  • [1]
    LI V C. On engineered cementitious composites (ECC)[J]. Journal of Advanced Concrete Technology,2003,1(3):215-230. doi: 10.3151/jact.1.215
    [2]
    LEE B Y, CHO C G, LIM H J, et al. Strain hardening fiber reinforced alkali-activated mortar-A feasibility study[J]. Construction and Building Materials,2012,37:15-20. doi: 10.1016/j.conbuildmat.2012.06.007
    [3]
    KAN L L, SHI H S, SAKULICH A R, et al. Self-healing characterization of engineered cementitious composite materials[J]. ACI Materials Journal,2010,107(6):617-624.
    [4]
    余江滔, 许万里, 张远淼. ECC-混凝土黏结界面断裂试验研究[J]. 建筑材料学报, 2015, 18(6):958-963, 970. doi: 10.3969/j.issn.1007-9629.2015.06.008

    YU Jiangtao, XU Wanli, ZHANG Yuanmiao. Experiment study on fracture property of ECC-concrete interface[J]. Journal of Building Materials,2015,18(6):958-963, 970(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.06.008
    [5]
    朱方之, 王鹏刚, 赵铁军, 等. SHCC修复试件黏结滑移性能研究[J]. 建筑材料学报, 2016, 19(1):72-77. doi: 10.3969/j.issn.1007-9629.2016.01.012

    ZHU Fangzhi, WANG Penggang, ZHAO Tiejun, et al. Studies on bond slippage properties of concrete specimen repaired with strain hardening cementitious composites (SHCC)[J]. Journal of Building Materials,2016,19(1):72-77(in Chinese). doi: 10.3969/j.issn.1007-9629.2016.01.012
    [6]
    ZHENG A H, LIU Z Z, LI F P, et al. Experimental investigation of corrosion-damaged RC beams strengthened in flexure with FRP grid-reinforced ECC matrix composites[J]. Engineering Structures,2021,244:112779. doi: 10.1016/j.engstruct.2021.112779
    [7]
    乔治, 潘钻峰, 梁坚凝, 等. ECC/RC组合梁受弯性能试验研究与分析[J]. 东南大学学报(自然科学版), 2017, 47(4):724-731.

    QIAO Zhi, PAN Zuanfeng, LIANG Jianning, et al. Experimental study and analysis of flexural behavior of ECC/RC composite beams[J]. Journal of Southeast University (Natural Science Edition),2017,47(4):724-731(in Chinese).
    [8]
    袁微微, 杜文平, 杨才千, 等. 二次受力下PVA-RFCC加固RC梁抗弯性能试验研究[J]. 建筑结构, 2020, 50(15):15-19, 41.

    YUAN Weiwei, DU Wenping, YANG Caiqian, et al. Experimental study on flexural behavior of RC beams strengthened with PVA-RFCC under secondary load[J]. Building Structure,2020,50(15):15-19, 41(in Chinese).
    [9]
    卜良桃, 陈军, 鲁晨. PVA-ECC加固RC足尺梁二次受力试验研究[J]. 湖南大学学报(自然科学版), 2011, 38(1):1-7.

    BU Liangtao, CHEN Jun, LU Chen. Experiment on full-scale RC beam reinforced by polyvinyl alcohol-engineered cementitious composite mortar in flexure subjected to secondary load[J]. Journal of Hunan University (Natural Science Edition),2011,38(1):1-7(in Chinese).
    [10]
    林于东, 宗周红, 林秋峰. 高强钢绞线网-聚合物砂浆加固混凝土及预应力混凝土梁的抗弯性能试验研究[J]. 工程力学, 2012, 29(9):141-149. doi: 10.6052/j.issn.1000-4750.2011.04.0193

    LIN Yudong, ZONG Zhouhong, LIN Qiufeng. Experiment study on flexural behavior of RC/PRC beams strengthened with high strength steel wire mesh and permeable polymer mortar[J]. Engineering Mechanics,2012,29(9):141-149(in Chinese). doi: 10.6052/j.issn.1000-4750.2011.04.0193
    [11]
    LI K, LIU W K, ZHANG K, et al. Bond behavior of stainless steel wire ropes embedded in engineered cementitious composites[J]. Construction and Building Materials,2021,281:122622. doi: 10.1016/j.conbuildmat.2021.122622
    [12]
    李可, 赵佳丽, 李志强, 等. 高强钢绞线网增强ECC抗弯加固无损RC梁试验[J]. 复合材料学报, 2022, 39(7):3428-3440.

    LI Ke, ZHAO Jiali, LI Zhiqiang, et al. Experiment on non-damaged RC beams strengthened by high-strength steel wire strand meshes reinforced ECC in bending[J]. Acta Materiae Compositae Sinica,2022,39(7):3428-3440(in Chinese).
    [13]
    WANG X L, YANG G H, QIAN W W, et al. Tensile behavior of high-strength stainless steel wire rope (HSSSWR)-reinforced ECC[J]. International Journal of Concrete Structures and Materials,2021,15(1):1-15. doi: 10.1186/s40069-021-00480-x
    [14]
    李可, 卫垚鑫, 金蕾蕾, 等. 高强不锈钢绞线网/ECC约束混凝土抗压强度[J]. 华中科技大学学报(自然科学版), 2021, 49(12):126-132.

    LI Ke, WEI Yaoxing, JIN Leilei, et al. Compressive strength of concrete confined by high-strength stainless steel stranded wire meshes and engineered cementitious composites[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2021,49(12):126-132(in Chinese).
    [15]
    李苗浩夫. 高强不锈钢绞线网/ECC加固钢筋混凝土柱受压性能研究[D]. 郑州: 郑州大学, 2019.

    LIMIAO Haofu. Research on compressive performance of reinforced concrete columns strengthened by high-strength stainless steel wire mesh/ECC[D]. Zhengzhou: Zhengzhou University, 2019(in Chinese).
    [16]
    周擎威. 高强不锈钢绞线与ECC黏结性能试验研究[D]. 郑州: 郑州大学, 2018.

    ZHOU Qingwei. Experimental study on the bonding performance between high-strength stainless steel strand and EEC[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    [17]
    NAPOLI A, REALFONZO R. Reinforced concrete beams strengthened with SRP/SRG systems: Experimental investigation[J]. Construction and Building Materials,2015,93(2):654-677.
    [18]
    中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of concrete structures: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese).
    [19]
    DONG S F, ZHOU D C, ASHRAF A, et al. Flexural toughness and calculation model of super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites,2019,104:103367. doi: 10.1016/j.cemconcomp.2019.103367
    [20]
    黄华. 高强钢绞线网—聚合物砂浆加固钢筋混凝土梁式桥试验研究与机理分析[D]. 西安: 长安大学, 2008.

    HUANG Hua. Experimental study and theoretical analysis on strengthening RC girder bridge with steel wire mesh and polymer mortar[D]. Xi'an: Chang'an University, 2008(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (732) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return