Volume 40 Issue 8
May  2023
Turn off MathJax
Article Contents
LI Penghu, JIN Haiyun, LIU Huaidong, et al. Low-temperature sintering of CaZnSi2O6 glass ceramics with machinable precursor based on silicone rubber[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4813-4820. doi: 10.13801/j.cnki.fhclxb.20221027.001
Citation: LI Penghu, JIN Haiyun, LIU Huaidong, et al. Low-temperature sintering of CaZnSi2O6 glass ceramics with machinable precursor based on silicone rubber[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4813-4820. doi: 10.13801/j.cnki.fhclxb.20221027.001

Low-temperature sintering of CaZnSi2O6 glass ceramics with machinable precursor based on silicone rubber

doi: 10.13801/j.cnki.fhclxb.20221027.001
Funds:  National Natural Science Foundation of China (52272073)
  • Received Date: 2022-09-05
  • Accepted Date: 2022-10-08
  • Rev Recd Date: 2022-10-06
  • Available Online: 2022-10-27
  • Publish Date: 2023-08-15
  • The applications of ceramics are limited by their high sintering temperatures and poor processability. The ceramizable silicone rubber composites were prepared using kilchoanite as a ceramic filler, low-melting-point glass frit as a flux, and nano SiO2 as a reinforcing agent. The CaZnSi2O6 glass ceramics were sintered at 1000℃ using the ceramizable composites as machinable precursors. The effect of the mass fraction of silicone rubber and the content of glass frit on the mechanical properties of the ceramics was studied. The effect of Bi2O3 as a secondary flux on the microstructure, flexural strength and dielectric properties of the ceramics was investigated. The results show that the flexural strength of the ceramic samples increase first and then decrease with reducing the mass fraction of silicone rubber or increasing the content of glass frit. The maximum flexural strength of the ceramic samples without Bi2O3 sintered at 1000℃ is 90.54 MPa, and the linear contraction is only 15%. A proper content of Bi2O3 not only improve the density of microstructure and increase the flexural strength to 110.48 MPa, but also decrease the tanδ of the ceramics at power frequency and high temperature obviously, and improve the breakdown strength of the ceramics at power frequency. The precursors in this study have a good processability and could complete the sintering of ceramics with different sizes and shapes.

     

  • loading
  • [1]
    柯瑞林, 邹雄, 王金合, 等. 陶瓷化高分子复合材料研究进展[J]. 绝缘材料, 2018, 51(12):1-5. doi: 10.16790/j.cnki.1009-9239.im.2018.12.001

    KE Ruilin, ZOU Xiong, WANG Jinhe, et al. Research progress of ceramifiable polymer composites[J]. Insulating Materials,2018,51(12):1-5(in Chinese). doi: 10.16790/j.cnki.1009-9239.im.2018.12.001
    [2]
    唐红川, 李鹏虎, 匡国文, 等. 陶瓷化硅橡胶研究进展[J]. 绝缘材料, 2019, 52(7):1-9.

    TANG Hongchuan, LI Penghu, KUANG Guowen, et al. Research progress on ceramic silicone rubber[J]. Insulating Materials,2019,52(7):1-9(in Chinese).
    [3]
    HANU L G, SIMON G P, MANSOURI J, et al. Development of polymer-ceramic composites for improved fire resistance[J]. Journal of Materials Processing Technology,2004,153-154:401-407. doi: 10.1016/j.jmatprotec.2004.04.104
    [4]
    MANSOURI J, BURFORD R P, CHENG Y B, et al. Formation of strong ceramified ash from silicone-based compositions[J]. Journal of Materials Science,2005,40(21):5741-5749. doi: 10.1007/s10853-005-1427-8
    [5]
    MANSOURI J, BURFORD R P, CHENG Y B. Pyrolysis behaviour of silicone-based ceramifying composites[J]. Materials Science and Engineering A,2006,425(1-2):7-14. doi: 10.1016/j.msea.2006.03.047
    [6]
    HANU L G, SIMON G P, CHENG Y B. Thermal stability and flammability of silicone polymer composites[J]. Polymer Degradation and Stability,2006,91(6):1373-1379. doi: 10.1016/j.polymdegradstab.2005.07.021
    [7]
    MANSOURI J, WOOD C A, ROBERT K, et al. Investigation of the ceramifying process of modified silicone silicate compositions[J]. Journal of Materials Science,2007,42(15):6046-6055. doi: 10.1007/s10853-006-1163-8
    [8]
    HAMDANI S, LONGUET C, PERRIN D, et al. Flame retardancy of silicone-based materials[J]. Polymer Degradation and Stability,2009,94(4):465-495. doi: 10.1016/j.polymdegradstab.2008.11.019
    [9]
    PĘDZICH Z, BIELIŃSKI D M, ANYSZKA R, et al. Ceramizable composites for fire resistant applications[J]. Key Engineering Materials,2014,602-603:290-295. doi: 10.4028/www.scientific.net/KEM.602-603.290
    [10]
    YU L, ZHOU S T, ZOU H W, et al. Thermal stability and ablation properties study of aluminum silicate ceramic fiber and acicular wollastonite filled silicone rubber composite[J]. Journal of Applied Polymer Science,2014,131(1):39700.
    [11]
    GUO J H, ZHANG Y, LI H J, et al. Effect of the sintering temperature on the microstructure, properties and formation mechanism of ceramic materials obtained from polysiloxane elastomer-based ceramizable composites[J]. Journal of Alloys and Compounds,2016,678:499-505. doi: 10.1016/j.jallcom.2016.04.030
    [12]
    HU S, CHEN F, LI J G, et al. The ceramifying process and mechanical properties of silicone rubber/ammonium polyphosphate/aluminium hydroxide/mica composites[J]. Polymer Degradation and Stability,2016,126:196-203. doi: 10.1016/j.polymdegradstab.2016.02.010
    [13]
    LOU F P, YAN W, GUO W H, et al. Preparation and properties of ceramifiable flame-retarded silicone rubber composites[J]. Journal of Thermal Analysis and Calorimetry,2017,130(2):813-821. doi: 10.1007/s10973-017-6448-4
    [14]
    PĘDZICH Z, BUKAŃSKA A, BIELIŃSKI D M, et al. Microstructure evolution of silicone rubber-based composites during ceramization in different conditions[J]. Compo-sites Theory and Practice,2012,12(4):251-255.
    [15]
    BIELIŃSKI D M, ANYSZKA R, PĘDZICH Z, et al. Ceramizable silicone rubber composites: Influence of type of mineral filler on ceramization[J]. Composites Theory and Practice,2012,12(4):256-261.
    [16]
    ANYSZKA R, BIELIŃSKI D M, PĘDZICH Z, et al. Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites[J]. Journal of Thermal Analysis and Calorimetry,2015,119(1):111-121. doi: 10.1007/s10973-014-4156-x
    [17]
    WANG J H, JI C T, YAN Y T, et al. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers[J]. Polymer Degradation and Stability,2015,121:149-156. doi: 10.1016/j.polymdegradstab.2015.09.003
    [18]
    IMIELA M, ANYSZKA R, BIELIŃSKI D M, et al. Effect of carbon fibers on thermal properties and mechanical strength of ceramizable composites based on silicone rubber[J]. Journal of Thermal Analysis and Calorimetry,2016,124(1):197-203. doi: 10.1007/s10973-015-5115-x
    [19]
    ANYSZKA R, BIELIŃSKI D M, PĘDZICH Z, et al. Effect of mineral filler additives on flammability, processing and use of silicone-based ceramifiable composites[J]. Polymer Bulletin,2018,75(4):1731-1751. doi: 10.1007/s00289-017-2113-0
    [20]
    孟盼, 王雁冰, 魏冲, 等. 硅藻土/硅橡胶可陶瓷化复合材料的制备及性能[J]. 复合材料学报, 2017, 34(1):53-59. doi: 10.13801/j.cnki.fhclxb.20160411.003

    MENG Pan, WANG Yanbing, WEI Chong, et al. Preparation and properties of ceramifiable diatomite/silicone rubber composites[J]. Acta Materiae Compositae Sinica,2017,34(1):53-59(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160411.003
    [21]
    LI P H, JIN H Y, WEI S C, et al. Ceramization mechanism of ceramizable silicone rubber composites with nano silica at low temperature[J]. Materials,2020,13(17):3708. doi: 10.3390/ma13173708
    [22]
    李函坚, 郭建华, 高伟, 等. 白炭黑对陶瓷化硅橡胶瓷化性能的影响[J]. 有机硅材料, 2015, 29(5):360-365.

    LI Hanjian, GUO Jianhua, GAO Wei, et al. Effect of silica on ceramifying properties of silicone rubber-based ceramizable composites[J]. Silicone Material,2015,29(5):360-365(in Chinese).
    [23]
    孟盼, 张光武, 熊梦, 等. 玻璃料对可陶瓷化硅橡胶基复合材料耐高温性能的影响[J]. 复合材料学报, 2016, 33(10):2205-2214.

    MENG Pan, ZHANG Guangwu, XIONG Meng, et al. Effect of glass frits on high-temperature resistance properties of ceramifiable silicone rubber matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(10):2205-2214(in Chinese).
    [24]
    GUO J H, GAO W, WANG Y, et al. Effect of glass frit with low softening temperature on the properties, microstructure and formation mechanism of polysiloxane elastomer-based ceramizable composites[J]. Polymer Degradation and Stability,2017,136:71-79. doi: 10.1016/j.polymdegradstab.2016.12.012
    [25]
    LOU F P, CHENG L H, LI Q Y, et al. The combination of glass dust and glass fiber as fluxing agents for ceramifiable silicone rubber composites[J]. RSC Advances,2017,7(62):38805-38811. doi: 10.1039/C7RA07432H
    [26]
    唐红川, 李鹏虎, 匡国文, 等. 玻璃粉含量对陶瓷化硅橡胶性能的影响[J]. 硅酸盐学报, 2020, 48(6):870-876.

    TANG Hongchuan, LI Penghu, KUANG Guowen, et al. Effect of glass powder content on properties of ceramizable silicone rubber[J]. Journal of the Chinese Ceramic Society,2020,48(6):870-876(in Chinese).
    [27]
    LI P H, JIN H Y, LIU H D, et al. Low-temperature sintering of CaZnSi2O6 glass ceramics with machinable precursor based on silicone rubber and enhanced mechanical strength by Bi2O3[J]. Materials Letters,2022,324:132650. doi: 10.1016/j.matlet.2022.132650
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (605) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return