Volume 40 Issue 7
Apr.  2023
Turn off MathJax
Article Contents
XIN Hua, LI Yangfan, PENG Qi, et al. Preparation and properties of triple shape memory composites based on trans-polyisopren/poly(ethylene-co-vinyl acetate)[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4039-4047. doi: 10.13801/j.cnki.fhclxb.20221021.002
Citation: XIN Hua, LI Yangfan, PENG Qi, et al. Preparation and properties of triple shape memory composites based on trans-polyisopren/poly(ethylene-co-vinyl acetate)[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4039-4047. doi: 10.13801/j.cnki.fhclxb.20221021.002

Preparation and properties of triple shape memory composites based on trans-polyisopren/poly(ethylene-co-vinyl acetate)

doi: 10.13801/j.cnki.fhclxb.20221021.002
Funds:  National Natural Science Foundation of China (51603117)
  • Received Date: 2022-07-21
  • Accepted Date: 2022-10-16
  • Rev Recd Date: 2022-09-24
  • Available Online: 2022-10-21
  • Publish Date: 2023-07-15
  • The TPI-EVA triple shape memory composites were prepared by compounding trans-polyisoprene and poly(ethylene-co-vinyl acetate) (TPI-EVA), and designed cross-linking reaction of dicumyl peroxide to connect the two phases. The TPI-EVA composites were characterized by rheometer, universal testing machine, XRD, DSC and dynamic thermomechanical analyzer (DMA). The effects of the mass ratio of EVA on the mechanical properties, phase structure, crystalline properties and triple shape memory properties of TPI-EVA composites were studied. The results show that with the increase of the mass ratio of EVA, the crystallization temperature (Tc) of TPI decreases from 14.7℃ to 8.2℃, and the Tc of EVA increase slightly. SEM test showed that with the increases of EVA mass ratio, the phase interface of the composites changes from smooth to rough; DMA test shows that the increase of EVA mass ratio increases the first temporary shape memory fixation rate of the samples from 57.6% to 88.5%. Moreover, the TPI-EVA composites exhibit excellent mechanical properties, the tensile strength is as high as 30.3 MPa and the elongation at break reaches 490%.

     

  • loading
  • [1]
    WANG F, ZHANG C, TAN A, et al. Photothermal and magnetocaloric-stimulated shape memory and self-healing via magnetic polymeric composite with dynamic crosslinking[J]. Polymer,2021,223:123677. doi: 10.1016/j.polymer.2021.123677
    [2]
    LIU Y J, LV H B, LAN X, et al. Review of electro-active shape-memory polymer composite[J]. Composites Science and Technology,2009,69(13):2064-2068. doi: 10.1016/j.compscitech.2008.08.016
    [3]
    SONG Q, CHEN H, ZHOU S, et al. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups[J]. Polymer Chemistry,2016,7(9):1739-1746. doi: 10.1039/C5PY02010G
    [4]
    XIAO X L, KONG D Y, QIU X Y, et al. Shape-memory polymers with adjustable high glass transition temperatures[J]. Macromolecules,2015,48(11):3582-3589. doi: 10.1021/acs.macromol.5b00654
    [5]
    YANDE C, DONG L, CHEN G, et al. Bioinspired shape memory hydrogel artificial muscles driven by solvents[J]. ACS Nano,2021,15(8):13712-13720. doi: 10.1021/acsnano.1c05019
    [6]
    ZHANG H J, XIA H S, ZHAO Y. Light-controlled complex deformation and motion of shape-memory polymers using a temperature gradient[J]. ACS Macro Letters,2014,3(9):940-943. doi: 10.1021/mz500520b
    [7]
    LI Z, ZHANG X, WANG S, et al. Polydopamine coated shape memory polymer: Enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization[J]. Chemical Science,2016,7(7):4741-4747. doi: 10.1039/C6SC00584E
    [8]
    ZHANG F H, ZHANG Z C, LUO C J, et al. Remote, fast actuation of programmable multiple shape memory composites by magnetic fields[J]. Journal of Materials Chemistry C,2015,3(43):11290-11293. doi: 10.1039/C5TC02464A
    [9]
    KARASU F, WEDER C. Blends of poly(ester urethane)s and polyesters as a general design approach for triple-shape memory polymers[J]. Journal of Applied Polymer Science,2020,138(9):49935.
    [10]
    DELAEY J, DUBRUEL P, VAN VLIERBERGHE S. Shape-memory polymers for biomedical applications[J]. Advanced Functional Materials,2020,30(44):1909047. doi: 10.1002/adfm.201909047
    [11]
    XU C, ZHENG Z, LIN M, et al. Strengthened, antibacterial, and conductive flexible film for humidity and strain sensors[J]. ACS Applied Materials & Interfaces,2020,12(31):35482-35492. doi: 10.1021/acsami.0c10101
    [12]
    ARUN D I, KUMAR K S S, KUMAR B S, et al. High glass-transition polyurethane-carbon black electro-active shape memory nanocomposite for aerospace systems[J]. Materials Science and Technology,2019,35(5):596-605. doi: 10.1080/02670836.2019.1575054
    [13]
    ALSHEBLY Y S, NAFEA M, MOHAMED ALI M S, et al. Review on recent advances in 4D printing of shape memory polymers[J]. European Polymer Journal,2021,159:110708. doi: 10.1016/j.eurpolymj.2021.110708
    [14]
    RAMARAJU H, AKMAN R E, SAFRANSKI D L, et al. Designing biodegradable shape memory polymers for tissue repair[J]. Advanced Functional Materials,2020,30(44):2002014. doi: 10.1002/adfm.202002014
    [15]
    ZHENG X Y, ZHOU B, XUE S F. A viscoelastic-plastic constitutive model of shape memory polymer[J]. Journal of Mechanics,2019,35(5):601-611. doi: 10.1017/jmech.2018.56
    [16]
    HUANG Y N, FAN L F, RONG M Z, et al. External stress-free reversible multiple shape memory polymers[J]. ACS Applied Materials & Interfaces,2019,11(34):31346-31355. doi: 10.1021/acsami.9b10052
    [17]
    NIE J, HUANG J, FAN J, et al. Strengthened, self-healing, and conductive ENR-based composites based on multiple hydrogen bonding interactions[J]. ACS Sustainable Chemistry & Engineering,2020,8(36):13724-13733.
    [18]
    ZHENG Y, JI X, YIN M, et al. Strategy for fabricating multiple-shape-memory polymeric materials via the multilayer assembly of co-continuous blends[J]. ACS Applied Materials & Interfaces,2017,9(37):32270-32279. doi: 10.1021/acsami.7b10345
    [19]
    严瑞芳. 一种古老而又年轻的天然高分子—杜仲胶[J]. 高分子通报, 1989(2):39-44.

    YAN Ruifang. An age-old and young natural polymer—Gutta-percha[J]. Polymer Bulletin,1989(2):39-44(in Chinese).
    [20]
    张继川, 薛兆弘, 严瑞芳, 等. 天然高分子材料—杜仲胶的研究进展[J]. 高分子学报, 2011(10):1105-1117.

    ZHANG Jichuan, XUE Zhaohong, YAN Ruifang, et al. Natural polymer material—Recent studies on eucommia ulmoides gum[J]. Acta Polymerica Sinica,2011(10):1105-1117(in Chinese).
    [21]
    WANG Y, PEI X, XIA L, et al. Covalent crosslinks turn natural Eucommia ulmoides gum/polybutene-1 composites into multiple shape memory materials[J]. Polymer Composites,2021,43(3):1371-1382.
    [22]
    KANG H, GONG M, XU M, et al. Fabricated biobased eucommia ulmoides gum/polyolefin elastomer thermoplastic vulcanizates into a shape memory material[J]. Industrial & Engineering Chemistry Research,2019,58(16):6375-6384.
    [23]
    QI X, ZHAO X, LI Y, et al. A high toughness elastomer based on natural Eucommia ulmoides gum[J]. Journal of Applied Polymer Science,2020,138(11):50007.
    [24]
    WANG Y, LIU J, XIA L, et al. Fully biobased shape memory thermoplastic vulcanizates from poly(lactic acid) and modified natural Eucommia ulmoides gum with co-continuous structure and super toughness[J]. Polymers (Basel),2019,11(12):2040. doi: 10.3390/polym11122040
    [25]
    TIAN M, GAO W, HU J, et al. Multidirectional triple-shape-memory polymer by tunable cross-linking and crystallization[J]. ACS Applied Materials & Interfaces,2020,12(5):6426-6435.
    [26]
    WANG Y, XIA L, XIN Z. Triple shape memory effect of foamed natural Eucommia ulmoides gum/high density polyethylene composites[J]. Polymers for Advanced Technologies,2018,29(1):190-197. doi: 10.1002/pat.4102
    [27]
    HAN J L, LAI S M, CHIU Y T. Two-way multi-shape memory properties of peroxide crosslinked ethylene vinyl-acetate copolymer (EVA)/polycaprolactone (PCL) blends[J]. Polymers for Advanced Technologies,2018,29(7):2010-2024. doi: 10.1002/pat.4309
    [28]
    GU P, ZHANG J. Vinyl acetate content influence on thermal, non-isothermal crystallization, and optical characteristics of ethylenevinyl acetate copolymers[J]. Iranian Polymer Journal,2022,31:905-917. doi: 10.1007/s13726-022-01048-6
    [29]
    HAO C, WANG K, WANG Z, et al. Triple one-way and two-way shape memory poly(ethylene-co-vinyl acetate)/poly(ε-caprolactone) immiscible blends[J]. Journal of Applied Polymer Science,2021,139(1):51426.
    [30]
    LAI S M, LI C H, KAO H C, et al. Shape memory properties of melt-blended olefin block copolymer (OBC)/ethylene-vinyl acetate blends[J]. Journal of Macromolecular Science, Part B,2019,58(1):174-191. doi: 10.1080/00222348.2018.1558593
    [31]
    QI X M, DONG Y B, ISLAM M Z, et al. Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber[J]. Composites Science and Technology,2021,203:108609. doi: 10.1016/j.compscitech.2020.108609
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (593) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return