Volume 40 Issue 8
May  2023
Turn off MathJax
Article Contents
JIN Hua, ZHANG Shaojie, LI Zhewen, et al. On-line identification and evolution of active and passive oxidation for SiC-based thermal protection materials in atomic oxygen environment[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4792-4801. doi: 10.13801/j.cnki.fhclxb.20221018.001
Citation: JIN Hua, ZHANG Shaojie, LI Zhewen, et al. On-line identification and evolution of active and passive oxidation for SiC-based thermal protection materials in atomic oxygen environment[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4792-4801. doi: 10.13801/j.cnki.fhclxb.20221018.001

On-line identification and evolution of active and passive oxidation for SiC-based thermal protection materials in atomic oxygen environment

doi: 10.13801/j.cnki.fhclxb.20221018.001
Funds:  National Natural Science Foundation of China (11972136); Science Foundation of National Defense Science and Technology Key Laboratory of Special Environmental Composite Technology (20220092)
  • Received Date: 2022-09-02
  • Accepted Date: 2022-10-12
  • Rev Recd Date: 2022-09-23
  • Available Online: 2022-10-19
  • Publish Date: 2023-08-15
  • At present, the thermal protection mechanism of SiC-based materials for hypersonic vehicles mainly depends on the SiO2 protective layer formed by SiC passive oxidation at 1200-1700℃. However, the high-tempera-ture gas effect caused by hypersonic flight makes the thermal protection materials subjected to high temperature, low pressure and atomic oxygen loadings. The high activity of atomic oxygen will change the type of SiC oxidation reaction, resulting in the loss of protective ability. Therefore, the identification of active and passive oxidation types of materials under different flight conditions will directly determine the use threshold of materials, which is very important for the thermal protection systems (TPS) design of hypersonic vehicles and the development of new thermal protection materials. Based on it, this paper breaks the traditional method of analyzing the micro-composition of materials after oxidation, and establishes an on-line identification method and system of active and passive oxidation reaction for SiC-based thermal protection materials under high temperature, low pressure and atomic oxygen environment based on spectral diagnosis radio frequency (RF) plasma discharge and high power laser technology. The rapid on-line identification of active and passive oxidation reaction for SiC-based thermal protection materials is realized. After material analysis by SEM, EDS and XRD, the accuracy and reliability of this method were verified, and the evolution law for active oxidation of SiC materials in atomic oxygen environment was further explored, which provides an important support for the protection threshold of SiC-based thermal protection materials and the improvement of material properties.

     

  • loading
  • [1]
    JACOBSON N S, MYERS D L. Active oxidation of SiC[J]. Oxidation of Metals,2011,75(1):1-25.
    [2]
    WAGNER C. Passivity during the oxidation of silicon at elevated temperatures[J]. Journal of Applied Physics,1958,29(9):1295-1297. doi: 10.1063/1.1723429
    [3]
    CHATILLON C, TEYSSANDIER F. Thermodynamic assessment of the different steps observed during SiC oxidation[J]. Journal of the European Ceramic Society,2022,42(4):1175-1196. doi: 10.1016/j.jeurceramsoc.2021.11.064
    [4]
    MOMOZAWA A, YOKOTE N, TERUTSUKI D, et al. Dyna-mic oxidation of SiC with arc-heated plasma wind tunnel and laser heating[J]. Vacuum,2021,185:109899. doi: 10.1016/j.vacuum.2020.109899
    [5]
    YANG L W, XIAO X R, JING L, et al. Dynamic oxidation mechanism of SiC fiber reinforced SiC matrix composite in high-enthalpy plasmas[J]. Journal of the European Ceramic Society,2021,41(10):5388-5393. doi: 10.1016/j.jeurceramsoc.2021.03.064
    [6]
    ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. 1801 Alexander Bell Drive reston VA 20191: McGraw-Hill Inc, 2000: 361-363.
    [7]
    PARK T, PARK C, JUNG J, et al. Investigation of silicon carbide oxidation mechanism using ReaxFF molecular dynamics simulation[J]. Journal of Spacecraft and Rockets,2020,57(6):1328-1334. doi: 10.2514/1.A34669
    [8]
    KUBOTA Y, TANAKA H, ARAI Y, et al. Oxidation behavior of ZrB2-SiC-ZrC at 1700℃[J]. Journal of the European Ceramic Society,2017,37(4):1187-1194. doi: 10.1016/j.jeurceramsoc.2016.10.034
    [9]
    CHEN S Y, ZENG Y, XIONG X, et al. Static and dynamic oxidation behaviour of silicon carbide at high tempera-ture[J]. Journal of the European Ceramic Society,2021,41(11):5445-5456. doi: 10.1016/j.jeurceramsoc.2021.04.040
    [10]
    MONTEVERDE F, SAVINO R, FUMO M D S. Dynamic oxidation of ultra-high temperature ZrB2-SiC under high enthalpy supersonic flows[J]. Corrosion Science,2011,53(3):922-929. doi: 10.1016/j.corsci.2010.11.018
    [11]
    洪智亮, 张巧君, 李开元, 等. SiC/SiC复合材料在高温空气中的氧化行为[J]. 材料工程, 2021, 49(5):144-150. doi: 10.11868/j.issn.1001-4381.2020.001169

    HONG Zhiliang, ZHANG Qiaojun, LI Kaiyuan, et al. Oxidation behavior of SiC/SiC composites in air at high temperature[J]. Journal of Materials Engineering,2021,49(5):144-150(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.001169
    [12]
    YOU N N, LIU X Y, HAO J L, et al. Microwave plasma oxidation kinetics of SiC based on fast oxygen exchange[J]. Vacuum,2020,182:109762. doi: 10.1016/j.vacuum.2020.109762
    [13]
    BALAT-PICHELIN M, BEDRA L, GERASIMOVA O, et al. Recombination of atomic oxygen on α-Al2O3 at high temperature under air microwave-induced plasma[J]. Chemical Physics,2007,340(1-3):217-226. doi: 10.1016/j.chemphys.2007.09.019
    [14]
    OSAWA H, SUZUKI T, TAKAYANAGI H, et al. Characteristics of O2-Ar inductively coupled plasma test flow during catalytic recombination processes[J]. Journal of Thermophysics and Heat Transfer,2013,27(1):30-41. doi: 10.2514/1.T3722
    [15]
    MARSCHALL J, FLETCHER D G. High-enthalpy test envi-ronments, flow modeling and in situ diagnostics for characterizing ultra-high temperature ceramics[J]. Journal of the European Ceramic Society,2010,30(11):2323-2336. doi: 10.1016/j.jeurceramsoc.2010.01.010
    [16]
    BALAT P M. Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air[J]. Journal of the European Ceramic Society,1996,16(1):55-62. doi: 10.1016/0955-2219(95)00104-2
    [17]
    PELLEGRINI C, BALAT-PICHELIN M, RAPAUD O, et al. Oxidation resistance of Zr- and Hf-diboride composites containing SiC in air plasma up to 2600 K for aerospace applications[J]. Ceramics International,2022,48(2):2177-2190. doi: 10.1016/j.ceramint.2021.09.310
    [18]
    ZOU J, RUBIO V, BINNER J. Thermoablative resistance of ZrB2-SiC-WC ceramics at 2400℃[J]. Acta Materialia,2017,133:293-302. doi: 10.1016/j.actamat.2017.05.033
    [19]
    PARK J Y, KIM D, LEE H G, et al. Oxidation behaviors of SiCf/SiC composites tested at high temperature in air by an ablation method[J]. Journal of the Korean Ceramic Society,2018,55(5):498-503. doi: 10.4191/kcers.2018.55.5.03
    [20]
    YANG L W, XIAO X R, LIU L P, et al. Dynamic oxidation mechanism of carbon fiber reinforced SiC matrix composite in high-enthalpy and high-speed plasmas[J]. Journal of Advanced Ceramics,2022,11(2):365-377. doi: 10.1007/s40145-021-0540-8
    [21]
    VRLINIČ T, VESEL A, CVELBAR U, et al. Rapid surface functionalization of poly(ethersulphone) foils using a highly reactive oxygen-plasma treatment[J]. Surface and Interface Analysis,2007,39(6):476-481. doi: 10.1002/sia.2548
    [22]
    JIN H, MENG S H, ZHANG X H, et al. Effects of oxidation temperature, time, and ambient pressure on the oxidation of ZrB2-SiC-graphite composites in atomic oxygen[J]. Journal of the European Ceramic Society,2016,36(8):1855-1861. doi: 10.1016/j.jeurceramsoc.2016.02.043
    [23]
    ZENG Q X, JIN H, MENG S H, et al. Spatially resolved ground state atomic oxygen density during the mode transition of inductively coupled oxygen plasmas[J]. Vacuum,2019,164:98-104. doi: 10.1016/j.vacuum.2019.03.009
    [24]
    赵国利. 双频容性耦合等离子体的光谱诊断研究[D]. 大连: 大连理工大学, 2010.

    ZHAO Guoli. Spectroscopic diagnostics of a dual-frequency capacitively coupled plasma[D]. Dalian: Dalian University of Technology, 2010(in Chinese).
    [25]
    金华. 防热材料表面催化特性测试与评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    JIN Hua. Surface catalyticity properties testing and characterization methods of thermal protection materials[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [26]
    WOOLDRIDGE M S, DANCZYK S A, WU J. Quantitative evaluation of vibrational excitation of SiO A1Π–X1Σ+ flame emission from a silane/hydrogen/oxygen/argon diffusion flame[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2000,64(6):573-584. doi: 10.1016/S0022-4073(99)00136-3
    [27]
    PANERAI F, HELBER B, CHAZOT O, et al. Surface temperature jump beyond active oxidation of carbon/silicon carbide composites in extreme aerothermal conditions[J]. Carbon,2014,71:102-119. doi: 10.1016/j.carbon.2014.01.018
    [28]
    KUBOTA Y, HATTA H, YOSHINAKA T, et al. Use of volume element methods to understand experimental differences in active/passive transitions and active oxidation rates for SiC[J]. Journal of the American Ceramic Society,2013,96(4):1317-1323. doi: 10.1111/jace.12141
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (655) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return