Volume 39 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
PEI Yuchen, SUN Tongchen, LIU Wei, et al. Research of ultra-high temperature ceramic matrix composites prepared by organic-inorganic transformation[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4319-4326. doi: 10.13801/j.cnki.fhclxb.20220922.006
Citation: PEI Yuchen, SUN Tongchen, LIU Wei, et al. Research of ultra-high temperature ceramic matrix composites prepared by organic-inorganic transformation[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4319-4326. doi: 10.13801/j.cnki.fhclxb.20220922.006

Research of ultra-high temperature ceramic matrix composites prepared by organic-inorganic transformation

doi: 10.13801/j.cnki.fhclxb.20220922.006
Funds:  National Natural Science Foundation of China(21803062)
  • Received Date: 2022-07-04
  • Accepted Date: 2022-09-20
  • Rev Recd Date: 2022-09-09
  • Available Online: 2022-09-26
  • Publish Date: 2022-08-22
  • Ultra-high temperature ceramic matrix (UHTC) composites play a key role for the application of thermal structures of high-speed launch vehicle due to their lightweight, high melting point, high specific strength/stiffness and excellent anti-oxidation/ablation resistance. It is known that UHTC composites consist of carbon fiber reinforcement and ultra-high temperature ceramic matrix, where reinforcement and ceramic matrix possess different physical and chemical properties. To make better performance of UHTC composites, it is quite necessary to think about how to incorporate carbon fiber with ceramic matrix effectively, where the advantages for both fiber and matrix should be taken into accounts. In order to provide a guidance for the fundamental research and engineering application of UHTC composites, in this paper, the synthesis of precursors and the performance of C/ZrC-SiC and C/HfTaC-ZrC-SiC composites are reviewed. And then the technical route for the fabrication of UHTC composites via organic-inorganic transformation is proposed. It is expected to overcome the main issues which encountered in the development of composite design and fabrication.

     

  • loading
  • [1]
    MERCIER R, MCCLINTON C. Hypersonic propulsion-transforming the future of flight[C]//Aiaa International Air & Space Symposium & Exposition: the Next 100 Years. Dayton, 2003.
    [2]
    蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012.

    CAI Guobiao, XU Dajun. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012(in Chinese).
    [3]
    BEHRENS B, MULLER M. Technologies for thermal protection systems applied on reusable launcher[J]. Acta Astronautica,2004,55(3-9):529-536. doi: 10.1016/j.actaastro.2004.05.034
    [4]
    VANWIE D M, DREWRY J R D G, KING D E, et al. The hypersonic environment: Required operating conditions and design challenges[J]. Journal of Materials Science,2004,39:5915-5924. doi: 10.1023/B:JMSC.0000041688.68135.8b
    [5]
    SAVINO R, FUMO M D S, PATERNA D, et al. Aerothermodynamic study of UHTC-based thermal protection systems[J]. Aerospace Science and Technology,2005,9:151-160. doi: 10.1016/j.ast.2004.12.003
    [6]
    ZHOU Z J, DU J, SONG S X, et al. Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method[J]. Journal of Alloys and Compounds,2007,428:146-150. doi: 10.1016/j.jallcom.2006.03.073
    [7]
    ROSENBERG S D, SCHOENMAN L. New generation of high-performance engines for space propulsion[J]. Journal of Propulsion and Power,1994,10:40-46. doi: 10.2514/3.23709
    [8]
    CHEN Z, WU W, CHENG H, et al. Microstructure and evolution of iridium coating on the C/C composites ablated by oxyacetylene torch[J]. Acta Astronautica,2010,66:682-687. doi: 10.1016/j.actaastro.2009.08.008
    [9]
    张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2): 1-6.

    ZHANG L T, CHENG L F, Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 1-6(in Chinese).
    [10]
    PAUL A, JAYASEELAN D, VENUGOPAL S. UHTC compo-sites for hypersonic applications[J]. The American Ceramic Society Bulletin,2011,291:22-28.
    [11]
    ZHANG Q M. Research on CMC for aerospace applications[J]. Aerospace Materials & Technology,2011,6:1-3.
    [12]
    WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics,2009,39:716-739.
    [13]
    JACKSON T A, EKLUND D R, FINK A J. High speed propulsion: Performance advantage of advanced materials[J]. Journal of Materials Science,2004,39:5905-5913. doi: 10.1023/B:JMSC.0000041687.37448.06
    [14]
    SQUIRE T H, MARSCHALL J. Material property requirements for analysis and design of UHTC components in hypersonic applications[J]. Journal of the European Ceramic Society,2010,30:2239-2251. doi: 10.1016/j.jeurceramsoc.2010.01.026
    [15]
    ZHU T, XU L, ZHANG X, et al. Densification, microstructure and mechanical properties of ZrB2-SiCw ceramic composites[J]. Journal of the European Ceramic Society,2009,29:2893-2901. doi: 10.1016/j.jeurceramsoc.2009.03.008
    [16]
    王海龙, 汪长安, 张锐, 等. 纳米SiC晶须和SiC颗粒混合增韧ZrB2陶瓷性能[J]. 复合材料学报, 2009, 26:95-101. doi: 10.3321/j.issn:1000-3851.2009.04.017

    WANG H L, WANG C A, ZHANG R, et al. Properties of ZrB2 ceramics reinforced by SiC nanowhiskers and SiC particles[J]. Acta Materiae Compositae Sinica,2009,26:95-101(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.04.017
    [17]
    ZHANG X, WANG Z, SUN X, et al. Effect of graphite flake on the mechanical properties of hot pressed ZrB2-SiC ceramics[J]. Materials Letters,2008,62:4360-4362. doi: 10.1016/j.matlet.2008.07.027
    [18]
    SLIVESTRONI L, FABBRICHE D D, MELANDRI C, et al. Relationships between carbon fiber type and interfacial domain in ZrB2-based ceramics[J]. Journal of the European Ceramic Society,2016,36:17-24. doi: 10.1016/j.jeurceramsoc.2015.09.026
    [19]
    SHIMADA S. A thermoanalytical study on the oxidation of ZrC and HfC powders with formation of carbon[J]. Solid State Ionics,2002,149:319-326. doi: 10.1016/S0167-2738(02)00180-7
    [20]
    LI Z Q, LI H J, ZHANG S Y, et al. Microstructures and ablation properties of C/C-SiC-ZrC composites prepared using C/C skeletons with various densities[J]. Ceramics International,2013,39:8173-8181. doi: 10.1016/j.ceramint.2013.03.093
    [21]
    BERKOWITZ-MATTUCK J B. High-temperature oxidation III. Zirconium and hafnium diborides[J]. Journal of the Electrochemical Society,1966,113:908-914. doi: 10.1149/1.2424154
    [22]
    HU P, ZHANG X H, HAN J C, et al. Effect of various addi-tives on the oxidation behavior of ZrB2-based ultra-high-temperature ceramics at 1800°C[J]. Journal of the Ameri-can Ceramic Society,2010,93:345-349. doi: 10.1111/j.1551-2916.2009.03420.x
    [23]
    成来飞, 张立同, 梅辉, 等. 化学气相渗透工艺制备陶瓷基复合材料[J]. 上海大学学报, 2014, 20:15-32.

    CHENG L F, ZHANG L T, MEI H, et al. Manufacturing of CMCs by chemical vapor infiltration process[J]. Journal of Shanghai University,2014,20:15-32(in Chinese).
    [24]
    WANG Y G, ZHU X J, ZHANG L T, et al. C/C-SiC-ZrC composites fabricated by reactive melt infiltration with Si0.87Zr0.13 alloy[J]. Ceramics International,2012,38:4337-4343. doi: 10.1016/j.ceramint.2012.02.016
    [25]
    ZHAO D, ZHANG C G, HU H F, et al. Preparation and characterization of three-dimensional carbon fiber reinforced zirconium carbide composite by precursor infiltration and pyrolysis process[J]. Ceramics International,2001,37:2089-2093.
    [26]
    YAN B, CHEN Z F, LI C, et al. Ablation morphology and microstructure of 3D or thogonal Cf/SiC composites prepared by PIP[J]. Science and Engineering of Composite Materials,2008,15:71-77. doi: 10.1515/SECM.2008.15.1.71
    [27]
    KRUT D P, BORZOV M V, LEMENOVSKII D A, et al. Synthesis and reactivity of metal-containing monomers. Part 59. Preparation and polymerization transformations of vinyl and isopropenyl derivatives of hafnocene dichloride[J]. Russian Chemical Bulletin International Edition,2005,54:247-251. doi: 10.1007/s11172-005-0244-1
    [28]
    SACKS M D, WANG C A, YANG Z, et al. Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors[J]. Journal of Materials Science,2004,39:6057-6066. doi: 10.1023/B:JMSC.0000041702.76858.a7
    [29]
    曹淑伟, 谢征芳, 王军, 等. 聚锆碳硅烷陶瓷先驱体的制备与表征[J]. 高分子学报, 2008(6):621-625. doi: 10.3321/j.issn:1000-3304.2008.06.018

    CAO S W, XIE Z F, WANG J, et al. Synthesis and characterization of polyzirconocarbosilane precursor[J]. Acta Polymerica Sinica,2008(6):621-625(in Chinese). doi: 10.3321/j.issn:1000-3304.2008.06.018
    [30]
    孔玮佳, 于守泉, 戈敏, 等. 碳化锆陶瓷有机前驱体的热解过程[J]. 过程工程学报, 2019, 19:624-630. doi: 10.12034/j.issn.1009-606X.218299

    KONG W J, YU S Q, GE M, et al. Pyrolysis of an organic polymeric precursor of zirconium carbide ceramics[J]. The Chinese Journal of Process Engineering,2019,19:624-630(in Chinese). doi: 10.12034/j.issn.1009-606X.218299
    [31]
    LI Q G, DONG S M, WANG Z, et al. Microstructures and mechanical properties of 4-directional, Cf/ZrC-SiC composites using ZrC precursor and polycarbosilane[J]. Materials Science and Engineering B,2013,178:1186-1190. doi: 10.1016/j.mseb.2013.07.001
    [32]
    HU H F, WANG Q K, CHEN Z H, et al. Preparation and characterization of C/SiC-ZrB2 composites by precursor infiltration and pyrolysis process[J]. Ceramics International,2010,36:1011-1016. doi: 10.1016/j.ceramint.2009.11.015
    [33]
    CAI T, QIU W F, LIU D, et al. Synthesis of soluble polyyne polymers containing zirconium and silicon and corresponding conversion to nanosized ZrC/SiC composite ceramics[J]. Dalton Trans,2013,42:4285-4290. doi: 10.1039/c2dt32428h
    [34]
    CAI T, QIU W F, LIU D, et al. Synthesis, characterization, and microstructure of hafnium boride-based composite ceramics via preceramic method[J]. Journal of the Ameri-can Ceramic Society,2013,96:1999-2004. doi: 10.1111/jace.12270
    [35]
    LU Y, YE L, HAN W J, et al. Synthesis, characterization and microstructure of tantalum carbide-based ceramics by liquid polymeric precursor method[J]. Ceramics International,2015,41:12475-12479. doi: 10.1016/j.ceramint.2015.06.023
    [36]
    CAI T, QIU W, LIU D, et al. Synthesis of ZrC-SiC powders by a preceramic solution route[J]. Journal of the American Ceramic Society,2013,96:3023-3026. doi: 10.1111/jace.12551
    [37]
    LIU D, QIU W, CAI T, et al. Synthesis, characterization, and microstructure of ZrC/SiC composite ceramic via liquid precursor conversion method[J]. Journal of the American Ceramic Society,2014,97:1242-1247. doi: 10.1111/jace.12876
    [38]
    孙同臣, 于新民, 王涛, 等. 锆组元改性Cf/SiC的制备及烧蚀性能[J]. 宇航材料工艺, 2015, 45(4):35-39. doi: 10.3969/j.issn.1007-2330.2015.04.008

    SUN T C, YU X M, WANG T, et al. Preparation and anti-ablation property of Cf/SiC composites modified by zirconium element[J]. Aerospace Materials & Technology,2015,45(4):35-39(in Chinese). doi: 10.3969/j.issn.1007-2330.2015.04.008
    [39]
    刘伟, 宋环君, 于艺, 等. PIP法制备C/ZrC-SiC复合材料工艺与性能研究[J]. 宇航材料工艺, 2019(4):41-44.

    LIU W, SONG H J, YU Y, et al. Process and properties of C/ZrC-SiC composites prepared by precursor infiltration and pyrolysis[J]. Aerospace Materials & Technology,2019(4):41-44(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (679) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return