Volume 39 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
LI Yan, JIN Yabin. Research progress on metamaterials for wave function regulation[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4259-4273. doi: 10.13801/j.cnki.fhclxb.20220712.001
Citation: LI Yan, JIN Yabin. Research progress on metamaterials for wave function regulation[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4259-4273. doi: 10.13801/j.cnki.fhclxb.20220712.001

Research progress on metamaterials for wave function regulation

doi: 10.13801/j.cnki.fhclxb.20220712.001
  • Received Date: 2022-05-24
  • Accepted Date: 2022-07-08
  • Rev Recd Date: 2022-07-01
  • Available Online: 2022-07-13
  • Publish Date: 2022-08-22
  • Metamaterials are artificially constructed composite structural materials. By designing the structural parameters of units, we can realize a great wealth of wave functions and even break the wave response limit of traditional materials. Metamaterials have great potential application in civil and defense industries such as aerospace engineering, transportation, among others. First, we briefly introduce the basic concept, properties and development history of metamaterials. Then, we introduce the basic functions of metamaterials in detail from three aspects: Band gap induced vibration reduction and its intelligent design, low-frequency broadband noise reduction and energy harvesting. Furthermore, based on the multi requirements of practical applications, we introduce the design principles and properties of different types of multi-functions integrated metamaterials such as lightweight-load bearing-vibration/noise reduction integration and energy harvesting-vibration/noise reduction integration. Finally, we summarize the above research progress and give a perspective on the cross research of metamaterials with composite materials, artificial intelligence and non-Hermitian time-varying systems, which can further improve the performance and application ability of metamaterials in future.

     

  • loading
  • [1]
    MA G, SHENG P. Acoustic metamaterials: From local resonances to broad horizons[J]. Science Advances,2016,2(2):e1501595. doi: 10.1126/sciadv.1501595
    [2]
    GE H, YANG M, MA C, et al. Breaking the barriers: Advances in acoustic functional materials[J]. National Science Review,2018,5(2):159-182. doi: 10.1093/nsr/nwx154
    [3]
    WANG Y S, CHEN W, WU B, et al. Tunable and active phononic crystals and metamaterials[J]. Applied Mechanics Reviews,2020,72(4):040801. doi: 10.1115/1.4046222
    [4]
    CUMMER S A, CHRISTENSEN J, ALÙ A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials,2016,1(3):1-13.
    [5]
    CHEN Y, LI T, SCARPA F, et al. Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control[J]. Physical Review Applied,2017,7(2):024012. doi: 10.1103/PhysRevApplied.7.024012
    [6]
    BERTOLDI K, VITELLI V, CHRISTENSEN J, et al. Flexible mechanical metamaterials[J]. Nature Reviews Materials,2017,2(11):17066. doi: 10.1038/natrevmats.2017.66
    [7]
    AL-LETHAWE M A, ADDOUCHE M, KHELIF A, et al. All-angle negative refraction for surface acoustic waves in pillar-based two-dimensional phononic structures[J]. New Journal of Physics,2012,14(12):123030. doi: 10.1088/1367-2630/14/12/123030
    [8]
    XIE Y, WANG W, CHEN H, et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface[J]. Nature Communications,2014,5:5553. doi: 10.1038/ncomms6553
    [9]
    FAURE C, RICHOUX O, FÉLIX S, et al. Experiments on metasurface carpet cloaking for audible acoustics[J]. Applied Physics Letters,2016,108(6):064103. doi: 10.1063/1.4941810
    [10]
    JIN Y, FANG X, LI Y, et al. Engineered diffraction gratings for acoustic cloaking[J]. Physical Review Applied,2019,11(1):011004. doi: 10.1103/PhysRevApplied.11.011004
    [11]
    WANG Z, LI C, ZATIANINA R, et al. Carpet cloak for water waves[J]. Physical Review E,2017,96(5):053107.
    [12]
    NING L, WANG Y Z, WANG Y S. Broadband square cloak in elastic wave metamaterial plate with active control[J]. Journal of the Acoustical Society of America,2021,150(6):4343-4352. doi: 10.1121/10.0008974
    [13]
    ZHANG H K, CHEN Y, LIU X N, et al. An asymmetric elastic metamaterial model for elastic wave cloaking[J]. Journal of the Mechanics and Physics of Solids,2020,135:103796. doi: 10.1016/j.jmps.2019.103796
    [14]
    LI X, YU X, CHUA J W, et al. Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption[J]. Small,2021,17(24):2100336. doi: 10.1002/smll.202100336
    [15]
    KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters,1993,71(13):2022-2025. doi: 10.1103/PhysRevLett.71.2022
    [16]
    PENNEC Y, VASSEUR J O, DJAFARI-ROUHANI B, et al. Two-dimensional phononic crystals: Examples and applications[J]. Surface Science Reports,2010,65(8):229-291. doi: 10.1016/j.surfrep.2010.08.002
    [17]
    LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science,2000,289(5485):1734-1736. doi: 10.1126/science.289.5485.1734
    [18]
    LI Y, LIANG B, GU Z M, et al. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces[J]. Scientific Reports,2013,3:2546. doi: 10.1038/srep02546
    [19]
    YU N, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials,2014,13(2):139-150. doi: 10.1038/nmat3839
    [20]
    ASSOUAR B, LIANG B, WU Y, et al. Acoustic metasurfaces[J]. Nature Reviews Materials,2018,3(12):460-472. doi: 10.1038/s41578-018-0061-4
    [21]
    JIN Y, PENNEC Y, BONELLO B, et al. Physics of surface vibrational resonances: Pillared phononic crystals, metamaterials, and metasurfaces[J]. Reports on Progress in Physics,2021,84:086502. doi: 10.1088/1361-6633/abdab8
    [22]
    MARTíNEZ-SALA R, SANCHO J, SÁNCHEZ J V, et al. Sound attenuation by sculpture[J]. Nature,1995,378:241.
    [23]
    PENNEC Y, DJAFARI-ROUHANI B, LARABI H, et al. Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate[J]. Physical Review B,2008,78(10):104105. doi: 10.1103/PhysRevB.78.104105
    [24]
    JIN Y, FERNEZ N, PENNEC Y, et al. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars[J]. Physical Review B,2016,93(5):054109. doi: 10.1103/PhysRevB.93.054109
    [25]
    王凯, 周加喜, 蔡昌琦, 等. 低频弹性波超材料的若干进展[J]. 力学学报, 2022, 54(9): 1-17.

    WANG Kai, ZHOU Jiaxi, CAI Changqi, et al. Review of low-frequency elastic wave metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-17(in Chinese).
    [26]
    DEYMIER P A. Acoustic metamaterials and phononic crystals[M]. Berlin: Springer Science & Business Media, 2013.
    [27]
    DING H, FANG X, JIA B, et al. Deep learning enables accurate sound redistribution via nonlocal metasurfaces[J]. Physical Review Applied,2021,16(6):064035. doi: 10.1103/PhysRevApplied.16.064035
    [28]
    AHMED W W, FARHAT M, ZHANG X, et al. Deterministic and probabilistic deep learning models for inverse design of broadband acoustic cloak[J]. Physical Review Research,2021,3(1):013142. doi: 10.1103/PhysRevResearch.3.013142
    [29]
    LIU F, JIANG X, WANG X, et al. Machine learning-based design and optimization of curved beams for multistable structures and metamaterials[J]. Extreme Mechanics Letters,2020,41:101002. doi: 10.1016/j.eml.2020.101002
    [30]
    MA W, CHENG F, LIU Y. Deep-learning-enabled on-demand design of chiral metamaterials[J]. ACS Nano,2018,12(6):6326-6334. doi: 10.1021/acsnano.8b03569
    [31]
    LUO C, NING S, LIU Z, et al. Interactive inverse design of layered phononic crystals based on reinforcement learning[J]. Extreme Mechanics Letters,2020,36:100651. doi: 10.1016/j.eml.2020.100651
    [32]
    HE L, GUO H, JIN Y, et al. Machine-learning-driven on-demand design of phononic beams[J]. Science China Physics, Mechanics & Astronomy,2022,65(1):214612.
    [33]
    HE L, WEN Z, JIN Y, et al. Inverse design of topological metaplates for flexural waves with machine learning[J]. Materials & Design,2021,199:109390.
    [34]
    金亚斌, 温治辉. 二维共振结构板波动调控研究进展[J]. 力学季刊, 2022, 43(1):1-13. doi: 10.15959/j.cnki.0254-0053.2022.01.001

    JIN Yabin, WEN Zhihui. Research progress in wave modulation of two-dimensional resonant structured plates[J]. Chinese Quarterly of Mechanics,2022,43(1):1-13(in Chinese). doi: 10.15959/j.cnki.0254-0053.2022.01.001
    [35]
    CHAUNSALI R, CHEN C W, YANG J. Subwavelength and directional control of flexural waves in zone-folding induced topological plates[J]. Physical Review B,2018,97(5):054307. doi: 10.1103/PhysRevB.97.054307
    [36]
    CAO L, FU Q, SI Y, et al. Porous materials for sound absorption[J]. Composites Communications,2018,10:25-35. doi: 10.1016/j.coco.2018.05.001
    [37]
    ARENAS J P, CROCKER M J. Recent trends in porous sound-absorbing materials[J]. Sound & Vibration,2010,44(7):12-17.
    [38]
    YANG W, LI Y. Sound absorption performance of natural fibers and their composites[J]. Science China Technological Sciences,2012,55(8):2278-2283. doi: 10.1007/s11431-012-4943-1
    [39]
    ERSOY S, KÜÇÜK H. Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties[J]. Applied Acoustics,2009,70(1):215-220. doi: 10.1016/j.apacoust.2007.12.005
    [40]
    HOSSEINI FOULADI M, AYUB M, JAILANI MOHD NOR M. Analysis of coir fiber acoustical characteristics[J]. Applied Acoustics,2011,72(1):35-42. doi: 10.1016/j.apacoust.2010.09.007
    [41]
    马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学, 1975, 5(1):38-50.

    MA Dayou. Theory and design of sound absorption structure of micro perforated plate[J]. Science China,1975,5(1):38-50(in Chinese).
    [42]
    马大猷. 微穿孔板吸声体的准确理论和设计[J]. 声学学报, 1997, 22(5):385-394.

    MAA Dayou. General theory and design of microperforated-panel absorbers[J]. Acta Acustica,1997,22(5):385-394(in Chinese).
    [43]
    刘克, NOCKE C, 马大猷. 扩散场内微穿孔板吸声特性的实验研究[J]. 声学学报, 2000, 25(3):211-218. doi: 10.3321/j.issn:0371-0025.2000.03.003

    LIU Ke, NOCKE C, MA Dayou. Experimental investigation on sound absorption characteristics of microperforated panel in diffuse field[J]. Acta Acustica,2000,25(3):211-218(in Chinese). doi: 10.3321/j.issn:0371-0025.2000.03.003
    [44]
    MEI J, MA G, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature Communications,2012,3:756. doi: 10.1038/ncomms1758
    [45]
    MA G, YANG M, XIAO S, et al. Acoustic metasurface with hybrid resonances[J]. Nature Materials,2014,13(9):873-878. doi: 10.1038/nmat3994
    [46]
    LI Y, ASSOUAR B M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness[J]. Applied Physics Letters,2016,108(6):063502. doi: 10.1063/1.4941338
    [47]
    CAI X, GUO Q, HU G, et al. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators[J]. Applied Physics Letters,2014,105(12):121901. doi: 10.1063/1.4895617
    [48]
    ZHANG C, HU X. Three-dimensional single-port labyrinthine acoustic metamaterial: Perfect absorption with large bandwidth and tunability[J]. Physical Review Applied,2016,6(6):064025. doi: 10.1103/PhysRevApplied.6.064025
    [49]
    LIU L, CHANG H, ZHANG C, et al. Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth[J]. Applied Physics Letters,2017,111(8):083503. doi: 10.1063/1.4986142
    [50]
    李东庭, 黄思博, 莫方朔, 等. 基于微穿孔板和卷曲背腔复合结构的低频宽带吸声体[J]. 科学通报, 2020, 65(15):1420-1427. doi: 10.1360/TB-2019-0703

    LI Dongting, HUANG Sibo, MO Fangshuo, et al. Low-frequency broadband absorbers based on coupling micro-perforated panel and space-curling chamber[J]. Chinese Science Bulletin,2020,65(15):1420-1427(in Chinese). doi: 10.1360/TB-2019-0703
    [51]
    YANG M, CHEN S, FU C, et al. Optimal sound-absorbing structures[J]. Materials Horizons,2017,4:673-680.
    [52]
    MAK H Y, ZHANG X, DONG Z, et al. Going beyond the causal limit in acoustic absorption[J]. Physical Review Applied,2021,16(4):044062. doi: 10.1103/PhysRevApplied.16.044062
    [53]
    YANG M, SHENG P. Sound absorption structures: From porous media to acoustic metamaterials[J]. Annual Review of Materials Research,2017,47(1):83-114. doi: 10.1146/annurev-matsci-070616-124032
    [54]
    ZHOU Z, HUANG S, LI D, et al. Broadband impedance modulation via non-local acoustic metamaterials[J/OL]. National Science Review, 2021, 9(8): nwab171.[2022-07-30]. https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwab171/6368878?login=true.
    [55]
    HUANG S, FANG X, WANG X, et al. Acoustic perfect absorbers via spiral metasurfaces with embedded apertures[J]. Applied Physics Letters,2018,113(23):233501. doi: 10.1063/1.5063289
    [56]
    HUANG S, FANG X, WANG X, et al. Acoustic perfect absorbers via Helmholtz resonators with embedded apertures[J]. Journal of the Acoustical Society of America,2019,145(1):254-256. doi: 10.1121/1.5087128
    [57]
    HUANG S, ZHOU Z, LI D, et al. Compact broadband acoustic sink with coherently coupled weak resonances[J]. Science Bulletin,2020,65(5):373-379. doi: 10.1016/j.scib.2019.11.008
    [58]
    YANG T, ZHOU S, FANG S, et al. Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications[J]. Applied Physics Reviews,2021,8(3):031317. doi: 10.1063/5.0051432
    [59]
    杨涛, 周生喜, 曹庆杰, 等. 非线性振动能量俘获技术的若干进展[J]. 力学学报, 2021, 53(11):2894-2909. doi: 10.6052/0459-1879-21-474

    YANG Tao, ZHOU Shengxi, CAO Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(11):2894-2909(in Chinese). doi: 10.6052/0459-1879-21-474
    [60]
    WEN Z, WANG W, KHELIF A, et al. A perspective on elastic metastructures for energy harvesting[J]. Applied Physics Letters,2022,120(2):020501. doi: 10.1063/5.0078740
    [61]
    QI S, OUDICH M, LI Y, et al. Acoustic energy harvesting using an electromechanical Helmholtz resonator[J]. Applied Physics Letters,2016,108:263501. doi: 10.1063/1.4954987
    [62]
    JO S H, YOON H, SHIN Y C, et al. Elastic wave localization and harvesting using double defect modes of a phononic crystal[J]. Journal of Applied Physics,2020,127(16):164901. doi: 10.1063/5.0003688
    [63]
    DE PONTI J M, COLOMBI A, ARDITO R, et al. Graded elastic metasurface for enhanced energy harvesting[J]. New Journal of Physics,2020,22(1):013013. doi: 10.1088/1367-2630/ab6062
    [64]
    JIN Y, DJAFARI-ROUHANI B, TORRENT D. Gradient index phononic crystals and metamaterials[J]. Nanophotonics,2019,8(5):685-701. doi: 10.1515/nanoph-2018-0227
    [65]
    JIN Y, TORRENT D, DJAFARI-ROUHANI B. Invisible omnidirectional lens for flexural waves in thin elastic plates[J]. Journal of Physics D: Applied Physics,2017,50(22):225301. doi: 10.1088/1361-6463/aa6c98
    [66]
    JIN Y, TORRENT D, PENNEC Y, et al. Multimodal and omnidirectional beam splitters for Lamb modes in elastic plates[J]. AIP Advances,2016,6(12):121602. doi: 10.1063/1.4971213
    [67]
    JIN Y, KUMAR R, PONCELET O, et al. Flat acoustics with soft gradient-index metasurfaces[J]. Nature Communications,2019,10(1):143. doi: 10.1038/s41467-018-07990-5
    [68]
    JIN Y, TORRENT D, PENNEC Y, et al. Gradient index devices for the full control of elastic waves in plates[J]. Scientific Reports,2016,6:24437. doi: 10.1038/srep24437
    [69]
    JIN Y, TORRENT D, PENNEC Y, et al. Simultaneous control of the S0 and A0 Lamb modes by graded phononic crystal plates[J]. Journal of Applied Physics,2015,117(24):244904. doi: 10.1063/1.4923040
    [70]
    WANG W, IGLESIAS J, JIN Y, et al. Experimental realization of a pillared metasurface for flexural wave focusing[J]. APL Materials,2021,9(5):051125. doi: 10.1063/5.0052278
    [71]
    JIN Y, WANG W, KHELIF A, et al. Elastic metasurfaces for deep and robust subwavelength focusing and imaging[J]. Physical Review Applied,2021,15(2):024005. doi: 10.1103/PhysRevApplied.15.024005
    [72]
    JIN Y, BONELLO B, MOISEYENKO R P, et al. Pillar-type acoustic metasurface[J]. Physical Review B,2017,96(10):104311. doi: 10.1103/PhysRevB.96.104311
    [73]
    XIAO M, MA G, YANG Z, et al. Geometric phase and band inversion in periodic acoustic systems[J]. Nature Physics,2015,11(3):240-244. doi: 10.1038/nphys3228
    [74]
    ZHANG X, XIAO M, CHENG Y, et al. Topological sound[J]. Communications Physics,2018,1(1):97. doi: 10.1038/s42005-018-0094-4
    [75]
    CHAPLAIN G J, DE PONTI J M, AGUZZI G, et al. Topological rainbow trapping for elastic energy harvesting in graded Su-Schrieffer-Heeger systems[J]. Physical Review Applied,2020,14(5):054035. doi: 10.1103/PhysRevApplied.14.054035
    [76]
    WEN Z, JIN Y, GAO P, et al. Topological cavities in phononic plates for robust energy harvesting[J]. Mechanical Systems and Signal Processing,2022,162:108047. doi: 10.1016/j.ymssp.2021.108047
    [77]
    GAO P, TORRENT D, CERVERA F, et al. Majorana-like zero modes in kekule distorted sonic lattices[J]. Physical Review Letters,2019,123(19):196601. doi: 10.1103/PhysRevLett.123.196601
    [78]
    WEN Z, ZENG S, WANG D, et al. Robust edge states of subwavelength chiral phononic plates[J]. Extreme Mechanics Letters,2021,44:101209. doi: 10.1016/j.eml.2021.101209
    [79]
    JIN Y, ZENG S, WEN Z, et al. Deep-subwavelength lightweight metastructures for low-frequency vibration isolation[J]. Materials & Design,2022,215:110499.
    [80]
    REN Z, CHENG Y, CHEN M, et al. A compact multifunctional metastructure for Low-frequency broadband sound absorption and crash energy dissipation[J]. Materials & Design,2022,215:110462.
    [81]
    WANG D W, MA L, WANG X T, et al. Sound transmission loss of laminated composite sandwich structures with pyramidal truss cores[J]. Composite Structures,2019,220:19-30. doi: 10.1016/j.compstruct.2019.03.077
    [82]
    WANG D W, MA L. Sound transmission through composite sandwich plate with pyramidal truss cores[J]. Composite Structures,2017,164:104-117. doi: 10.1016/j.compstruct.2016.11.088
    [83]
    WANG D W, MA L, WEN Z H. Sound transmission through a sandwich structure with two-layered pyramidal core and cavity absorption[J]. Journal of Sound and Vibration,2019,459:114853. doi: 10.1016/j.jsv.2019.114853
    [84]
    WANG D W, WEN Z H, GLORIEUX C, et al. Sound absorption of face-centered cubic sandwich structure with micro-perforations[J]. Materials & Design,2020,186:108344.
    [85]
    WEN Z H, WANG D W, MA L. Sound transmission loss of sandwich panel with closed octahedral core[J]. Journal of Sandwich Structures & Materials,2019,23(1):174-193.
    [86]
    XU X, WU Q, PANG Y, et al. Multifunctional metamaterials for energy harvesting and vibration control[J]. Advanced Functional Materials,2021,32(7):2107896.
    [87]
    JIN M, LIANG B, YANG J, et al. Ultrathin planar metasurface-based acoustic energy harvester with deep subwavelength thickness and mechanical rigidity[J]. Scientific Reports,2019,9(1):11152. doi: 10.1038/s41598-019-47649-9
    [88]
    GU Z, GAO H, CAO P C, et al. Controlling sound in non-hermitian acoustic systems[J]. Physical Review Applied,2021,16(5):057001. doi: 10.1103/PhysRevApplied.16.057001
    [89]
    易凯军, 陈洋洋, 朱睿, 等. 力电耦合主动超材料及其弹性波调控[J]. 科学通报, 2022, 67(12):1290-1304.

    YI Kaijun, CHEN Yangyang, ZHU Rui, et al. Electromechanical active metamaterials and their applications in controlling elastic wave propagation[J]. Chinese Science Bulletin,2022,67(12):1290-1304(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (1244) PDF downloads(167) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return