Volume 39 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
YANG Xi, CAO Min, JIAN Yu, et al. Preparation and microwave absorption properties of porous charcoal/ Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4590-4601. doi: 10.13801/j.cnki.fhclxb.20211105.001
Citation: YANG Xi, CAO Min, JIAN Yu, et al. Preparation and microwave absorption properties of porous charcoal/ Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4590-4601. doi: 10.13801/j.cnki.fhclxb.20211105.001

Preparation and microwave absorption properties of porous charcoal/ Fe3O4 composites

doi: 10.13801/j.cnki.fhclxb.20211105.001
  • Received Date: 2021-08-24
  • Accepted Date: 2021-10-28
  • Rev Recd Date: 2021-09-30
  • Available Online: 2021-11-08
  • Publish Date: 2022-08-22
  • In order to improve the shortages of big density and narrow absorption bandwidth of Fe3O4 absorbing material, in this study, wood-based porous charcoal (WPC)/Fe3O4 composites were prepared from fast-growing masson pine wood by delignification and high temperature in-situ growth methods. The microwave absorption properties of the composites were regulated by tailoring the carbonization temperature. The results of micromorphology, structure and electromagnetic parameters show that, the WPC/Fe3O4 composites retain the natural three-dimensional porous structure of wood with Fe3O4 particles evenly loaded in the carbon walls and channels of WPC. The increment of carbonization temperature (630-690℃) can enhance the electric conductivity and microwave attenuation capacity of the composites, but too high temperature causes the impedance mismatching. The composite prepared at 670℃ exhibits excellent microwave absorption performance with a minimum reflection loss of −49.5 dB and an effective absorption bandwidth of 6.24 GHz (9.04-15.28 GHz), due to its strong attenuation capability and good impedance matching characteristics. The main dissipation mechanism includes conductive loss, polarization relaxation, and synergistic effect of dielectric and magnetic loss. The strong reflection loss and wide effective absorption bandwidth of WPC/Fe3O4 composite suggest a good prospect in electromagnetic absorption field, which can promote the value-added and functional application of fast-growing wood.

     

  • loading
  • [1]
    XU H L, YIN X W, ZHU M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces,2017,9(7):6332-6341. doi: 10.1021/acsami.6b15826
    [2]
    ZHANG N, HUANG Y, LIU X D, et al. High efficiency microwave absorption nanocomposites of multiple-phase core-shell CoNi alloy@C loaded on rGO conducting network[J]. Composites Part A: Applied Science and Manufacturing,2018,115:283-293. doi: 10.1016/j.compositesa.2018.10.012
    [3]
    LIU P B, GAO S, ZHANG G Z, et al. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption[J]. Advanced Functional Materials,2021,31(27):2102812. doi: 10.1002/adfm.202102812
    [4]
    ZHANG H X, SHI C, JIA Z R, et al. FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2021,584:382-394. doi: 10.1016/j.jcis.2020.09.122
    [5]
    LIU X D, HUANG Y, DING L, et al. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption[J]. Journal of Materials Science & Technology,2021,72:93-103. doi: 10.1016/j.jmst.2020.09.012
    [6]
    赵佳, 姚艳青, 杨煊赫, 等. 铁氧体及其复合吸波材料的研究进展[J]. 复合材料学报, 2020, 37(11):2684-2699.

    ZHAO Jia, YAO Yanqing, YANG Xuanhe, et al. Research progress of ferrite and its composite absorbing materials[J]. Acta Materiae Compositae Sinica,2020,37(11):2684-2699(in Chinese).
    [7]
    HUANG L, LI J J, WANG Z J, et al. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane[J]. Carbon,2019,143:507-516. doi: 10.1016/j.carbon.2018.11.042
    [8]
    SHAO Y Q, LU W B, CHEN H, et al. Flexible ultra-thin Fe3O4/MnO2 coreshell decorated CNT composite with enhanced electromagnetic wave absorption performance[J]. Composites Part B: Engineering,2018,144:111-117. doi: 10.1016/j.compositesb.2018.02.015
    [9]
    LIU J L, LIANG H S, WU H J. Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105760. doi: 10.1016/j.compositesa.2019.105760
    [10]
    LI J S, XIE Y Z, LU W B, et al. Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films[J]. Carbon,2018,129:76-84. doi: 10.1016/j.carbon.2017.11.094
    [11]
    ZHOU X F, ZHANG C H, ZHANG M, et al. Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance[J]. Composites Part A: Applied Science and Manufacturing,2019,127:105627. doi: 10.1016/j.compositesa.2019.105627
    [12]
    WANG H S, SHI P P, RUI M, et al. The green synthesis rGO/Fe3O4/PANI nanocomposites for enhanced electromagnetic waves absorption[J]. Progress in Organic Coatings,2020,139:105476. doi: 10.1016/j.porgcoat.2019.105476
    [13]
    李焕然, 马关胜, 杨智伟, 等. Fe3O4/CNTs@Cf 复合材料的制备及其吸波性能的研究[J]. 功能材料, 2021, 52(4):4023-4029. doi: 10.3969/j.issn.1001-9731.2021.04.005

    LI Huanran, MA Guansheng, YANG Zhiwei, et al. Preparation of Fe3O4/CNTs@Cf composite material and its microwave absorbing properties[J]. Functional Materials,2021,52(4):4023-4029(in Chinese). doi: 10.3969/j.issn.1001-9731.2021.04.005
    [14]
    XI J B, ZHOU E Z, LIU Y J, et al. Wood based straightway channel structure for high performance microwave absorption[J]. Carbon,2017,124:492-498. doi: 10.1016/j.carbon.2017.07.088
    [15]
    GUAN H, CHANG Z Y, WANG X Q. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano,2018,12(10):10365-10373. doi: 10.1021/acsnano.8b05763
    [16]
    LI X J, CAO M, PANG X N, et al. Microtubule-based hierarchical porous carbon for lightweight and strong wideband microwave absorption[J]. Journal of Materials Chemistry C,2021,9(5):1649-1656. doi: 10.1039/D0TC04486E
    [17]
    WANG X X, MA T, SHU J C, et al. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth[J]. Chemical Engineering Journal,2018,332:321-330. doi: 10.1016/j.cej.2017.09.101
    [18]
    GAO S, ZHANG G Z, WANG Y, et al. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption[J]. Journal of Materials Science & Technology,2021,88:56-65. doi: 10.1016/j.jmst.2021.02.011
    [19]
    LI X J, HE L L, LI Y S, et al. Catalytic graphite mechanism during CVD diamond film on iron and cobalt alloys in CH4-H2 atmospheres[J]. Surface & Coatings Technology,2019,360:20-28. doi: 10.1016/j.surfcoat.2018.12.120
    [20]
    LIU L Y, SHUANG Y, HU H Y, et al. Lightweight and efficient microwave absorbing materials based on loofah sponge derived hierarchically porous carbons[J]. ACS Sustainable Chemistry & Engineering,2019,7(1):1228-1238. doi: 10.1021/acssuschemeng.8b04907
    [21]
    MA F W, MA D, WU G, et al. Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors[J]. Chemical Communications,2016,52(40):6673-6676. doi: 10.1039/C6CC02147F
    [22]
    张艳. 生物质碳材料及生物质碳/磁性粒子复合材料的微波吸收性能研究[D]. 秦皇岛: 燕山大学, 2020.

    ZHANG Yan. Research on the microwave absorption properties of biomass carbon materials and biomass carbon/magnetic particle composite materials[D]. Qinhuangdao: Yanshan University, 2020(in Chinese).
    [23]
    LIU P B, GAO S, WANG Y, et al. Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers[J]. Carbon,2021,173:655-666. doi: 10.1016/j.carbon.2020.11.043
    [24]
    LIU T S, LIU N, GAI L X, et al. Hierarchical carbonaceous composites with dispersed Co species prepared using the inherent nanostructural platform of biomass for enhanced microwave absorption[J]. Microporous and Mesoporous Materials,2020,302:110210. doi: 10.1016/j.micromeso.2020.110210
    [25]
    WANG C, HAN X J, XU P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters,2011,98:072906. doi: 10.1063/1.3555436
    [26]
    YAN F, ZHANG S, ZHANG X, et al. Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry C,2018,6(47):12781-12787. doi: 10.1039/C8TC04222E
    [27]
    XU D W, XIONG X H, CHEN P, et al. Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties[J]. Journal of Magnetism and Magnetic Materials,2019,469:428-436. doi: 10.1016/j.jmmm.2018.09.019
    [28]
    NI S B, SUN X L, WANG X H, et al. Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties[J]. Materials Chemistry Physics,2010,124(1):353-358. doi: 10.1016/j.matchemphys.2010.06.046
    [29]
    CHENG Y, CAO J M, LI Y, et al. The out-side-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption[J]. ACS Sustainable Chemistry & Engineering,2018,6(1):1427-1435. doi: 10.1021/acssuschemeng.7b03846
    [30]
    QIU X, WANG L X, ZHU H L, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nanoporous carbon[J]. Nanoscale,2017,9(22):7408-7418. doi: 10.1039/C7NR02628E
    [31]
    FANG J Y, SHANG Y S, CHEN Z, et al. Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation[J]. Journal of Materials Chemistry C,2017,5(19):4695-4705. doi: 10.1039/C7TC00987A
    [32]
    ZHU L Y, ZENG X J, LI X P, et al. Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances[J]. Journal of Magnetism& Magnetic Materials,2016,426:114-120. doi: 10.1016/j.jmmm.2016.11.063
    [33]
    LI W X, QI H X, GUO F, et al. Co nanoparticles supported on cotton-based carbon fibers: A novel broadband microwave absorbent[J]. Journal of Alloys and Compounds,2019,772:760-769. doi: 10.1016/j.jallcom.2018.09.075
    [34]
    WANG H Y, ZHANG Y L, WANG Q Y, et al. Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties[J]. RSC Advances,2019,9(16):9126-9135. doi: 10.1039/C9RA00466A
    [35]
    GAO S S, AN Q D, XIAO Z Y, et al. Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honey comb like carbonaceous composites for enhanced microwave absorption[J]. RSC Advance,2018,8(34):19011-19023. doi: 10.1039/c8ra00913a
    [36]
    YANG M L, YUAN Y, LI Y, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework[J]. Carbon,2020,161:517-527. doi: 10.1016/j.carbon.2020.01.073
    [37]
    LV H L, ZHANG H Q, ZHAO J, et al. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures[J]. Nano Research,2016,9:1813-1822. doi: 10.1007/s12274-016-1074-1
    [38]
    WU Z C, TIAN K, HUANG T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces,2018,10(13):11108-11115. doi: 10.1021/acsami.7b17264
    [39]
    ZHANG X J, WANG G S, WEI Y Z, et al. Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene-CuS nanocomposites and polyvinylidene fluoride[J]. Journal of Materials Chemistry A,2013,1(39):12115-12122. doi: 10.1039/c3ta12451g
    [40]
    谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248.

    XIE Wenhan, GENG Haoran, LIU Yang, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite [J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248(in Chinese).
    [41]
    TONG G X, LIU Y, CUI T T, et al. Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings[J]. Applied Physics Letters,2016,108(7):072905. doi: 10.1063/1.4942095
    [42]
    ZHAO B, SHAO G, FAN B B, et al. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure[J]. Physical Chemistry Chemical Physics,2015,17(4):2531-2539. doi: 10.1039/C4CP05031B
    [43]
    SHENG A, YANG Y Q, YAN D X, et al. Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption[J]. Carbon,2020,167:530-540. doi: 10.1016/j.carbon.2020.05.107
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1058) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return