Volume 39 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
DING Anxin, YU Xingchen, YANG Peng, et al. Characterization and simulation on the cure behavior of epoxy resin for encapsulation structure[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1824-1833. doi: 10.13801/j.cnki.fhclxb.20210726.004
Citation: DING Anxin, YU Xingchen, YANG Peng, et al. Characterization and simulation on the cure behavior of epoxy resin for encapsulation structure[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1824-1833. doi: 10.13801/j.cnki.fhclxb.20210726.004

Characterization and simulation on the cure behavior of epoxy resin for encapsulation structure

doi: 10.13801/j.cnki.fhclxb.20210726.004
  • Received Date: 2021-04-08
  • Accepted Date: 2021-07-13
  • Rev Recd Date: 2021-07-08
  • Available Online: 2021-07-27
  • Publish Date: 2022-04-01
  • Based on simulation method which sequentially couples the heat transfer-cure and stress deformation modules for cure behavior, cure-related parameters were tested using adequate approaches for medium-high temperature curing resin E39D. In combination with reasonable hypotheses, curing resin property parameters or model which are related to heat transfer-cure and stress deformation modulus were derived. Then, finite element model of typical encapsulation structure containing E39D resin was built to simulate evolution of temperature and stress of the chosen point in the encapsulation structure, and the experimentally measured temperature and stress curves of the chose point were also given by means of Fiber Bragg Grating (FBG) monitoring technique. It can be observed that 8.2% maximum discrepancy in temperature and 17.3% maximum discrepancy in strain between experimental and numerical results exist, showing the validity of accepted assumptions and characterization methods.

     

  • loading
  • [1]
    JOHNSTON A A. An integrated model of the development of process-induced deformation in autoclave processing of composite structures[D]. Vancouver: The University of British Columbia, 1998.
    [2]
    张纪奎, 郦正能, 关志东, 等. 热固性复合材料固化过程三维有限元模拟和变形预测[J]. 复合材料学报, 2009, 26(1):174-178. doi: 10.3321/j.issn:1000-3851.2009.01.030

    ZHANG J K, LI Z N, GUAN Z D, et al. Three-dimensional finite element simulation and prediction for process-induced deformation of thermoset composites[J]. Acta Materiae Compositae Sinica,2009,26(1):174-178(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.01.030
    [3]
    YAN X. Finite element modeling of curing of epoxy matrix composites[J]. Journal of Applied Polymer Science,2007,103(4):2310-2319. doi: 10.1002/app.24337
    [4]
    SHIN D D, HAHN H T. Compaction of thick composites: Simulation and experiment[J]. Polymer Composites,2004,25(1):49-59. doi: 10.1002/pc.20004
    [5]
    马云荣, 贺继林, 李栋, 等. 树脂基复合材料曲面结构件固化变形数值模拟[J]. 复合材料学报, 2015, 32(3):874-880.

    MA Y R, HE J L, LI D, et al. Numerical simulation of curing deformation of resin matrix composite curved structure[J]. Acta Materiae Compositae Sinica,2015,32(3):874-880(in Chinese).
    [6]
    谭华, 晏石林. 热固性树脂基复合材料固化过程的三维数值模拟[J]. 复合材料学报, 2004, 21(6):167-172. doi: 10.3321/j.issn:1000-3851.2004.06.029

    TAN H, YAN S L. Three-dimensional simulation of curing process for thermoset composites[J]. Acta Materiae Compositae Sinica,2004,21(6):167-172(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.06.029
    [7]
    康峻铭, 孙亮亮, 王继辉, 等. 电子封装用环氧树脂固化温度与应变的三维有限元模拟[J]. 复合材料学报, 2019, 36(10):2330-2340.

    KANG J M, SUN L L, WANG J H, et al. Three-dimensional finite element simulation of temperature and strain in epoxy resin used to electronic packaging during curing[J]. Acta Materiae Compositae Sinica,2019,36(10):2330-2340(in Chinese).
    [8]
    ZOCHER M A, GROVES S E, ALLEN D H. A three-dimensional finite element formulation for thermoviscoelastic orthotropic media[J]. International Journal for Numerical Methods in Engineering,1997,40(12):2267-2288. doi: 10.1002/(SICI)1097-0207(19970630)40:12<2267::AID-NME156>3.0.CO;2-P
    [9]
    DING A, LI S, SUN J, et al. A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence[J]. Composite Structures,2016,136:34-43. doi: 10.1016/j.compstruct.2015.09.014
    [10]
    BOGETTI T A, GILLESPIE J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials,1992,26(5):626-660. doi: 10.1177/002199839202600502
    [11]
    DING A, LI S, WANG J, et al. A new path-dependent constitutive model predicting cure-induced distortions in composite structures[J]. Composites Part A: Applied Science and Manufacturing,2017,95:183-196. doi: 10.1016/j.compositesa.2016.11.032
    [12]
    MAGNUS SVANBERG J, ANDERS HOLMBERG J. Prediction of shape distortions Part I. FE-implementation of a path dependent constitutive model[J]. Composites Part A: Applied Science and Manufacturing,2004,35(6):711-721. doi: 10.1016/j.compositesa.2004.02.005
    [13]
    GARSTKA T, ERSOY N, POTTER K D, et al. In situ measurements of through-the-thickness strains during processing of AS4/8552 composite[J]. Composites Part A: Applied Science and Manufacturing,2007,38(12):2517-2526. doi: 10.1016/j.compositesa.2007.07.018
    [14]
    KRAVCHENKO O G, KRAVCHENKO S G, CASARES A, et al. Digital image correlation measurement of resin chemical and thermal shrinkage after gelation[J]. Journal of Materials Science,2015,50(15):5244-5252. doi: 10.1007/s10853-015-9072-3
    [15]
    BARAN I, HATTEL J, TUTUM C. Thermo-chemical modelling strategies for the pultrusion process[J]. Applied Composite Materials,2013,20(6):1247-1263. doi: 10.1007/s10443-013-9331-x
    [16]
    BARAN I, AKKERMAN R, HATTEL JH. Material characterization of a polyester resin system for the pultrusion process[J]. Composites Part B: Engineering,2014,64:194-201.
    [17]
    LEE S N, CHIU M T, LIN H S. Kinetic model for the curing reaction of a tetraglycidyl diamino diphenyl methane/diamino diphenyl sulfone (TGDDM/DDS) epoxy resin system[J]. Polymer Engineering & Science,1992,32(15):1037-1046.
    [18]
    ŠESTÁK J, BERGGREN G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures[J]. Thermochimica Acta,1971,3(1):1-12. doi: 10.1016/0040-6031(71)85051-7
    [19]
    KAMAL M R, SOUROUR S. Kinetics and thermal characterization of thermoset cure[J]. 1973, 13(1): 59-64.
    [20]
    GONZÁLEZ-ROMERO V M, CASILLAS N. Isothermal and temperature programmed kinetic studies of thermosets[J]. Polymer Engineering & Science, 1989, 29(5): 295-301.
    [21]
    JOHNSTON A, VAZIRI R, POURSARTIP A. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials,2001,35(16):1435-1469. doi: 10.1106/YXEA-5MH9-76J5-BACK
    [22]
    BARAN I, AKKERMAN R, HATTEL J H. Modelling the pultrusion process of an industrial L-shaped composite profile[J]. Composite Structures,2014,118:37-48.
    [23]
    KHOUN L, CENTEA T, HUBERT P. Characterization methodology of thermoset resins for the processing of compo-site materials—Case study: CYCOM 890RTM epoxy resin[J]. Journal of Composite Materials,2010,44(11):1397-1415. doi: 10.1177/0021998309353960
    [24]
    O'BRIEN D J, MATHER P T, WHITE S R. Viscoelastic properties of an epoxy resin during cure[J]. Journal of Compo-site Materials,2001,35(10):883-904. doi: 10.1177/a037323
    [25]
    CHEN J, WANG J, LI X, et al. Monitoring of temperature and cure-induced strain gradient in laminated composite plate with FBG sensors[J]. Composite Structures,2020,242:112168. doi: 10.1016/j.compstruct.2020.112168
    [26]
    LI X, WANG J, LI S, et al. Cure-induced temperature gradient in laminated composite plate: Numerical simulation and experimental measurement[J]. Composite Structures,2020,253(6):112822.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (1117) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return