Volume 39 Issue 5
Mar.  2022
Turn off MathJax
Article Contents
CHEN Zhuoyi, PENG Lan, LI Chuanxi, et al. Static behavior of CFRP full cover adjusted steel plate with center crack[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2329-2339. doi: 10.13801/j.cnki.fhclxb.20210622.005
Citation: CHEN Zhuoyi, PENG Lan, LI Chuanxi, et al. Static behavior of CFRP full cover adjusted steel plate with center crack[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2329-2339. doi: 10.13801/j.cnki.fhclxb.20210622.005

Static behavior of CFRP full cover adjusted steel plate with center crack

doi: 10.13801/j.cnki.fhclxb.20210622.005
  • Received Date: 2021-04-20
  • Accepted Date: 2021-06-11
  • Rev Recd Date: 2021-06-07
  • Available Online: 2021-06-22
  • Publish Date: 2022-03-23
  • When carbon fiber reinforced polymer (CFRP) is used to strengthen steel plate, CFRP is usually only adhered to the local part of the steel plate, which is susceptible to the influence of the peeling stress caused by the eccentricity of the specimen and the stress concentration at the lap edge. However, the peeling stress can be greatly reduced by using the full covering bonding method. The axial tensile tests of 30 CFRP reinforced steel plates with defects were carried out, and the unidirectional anti-stripping clamp was set up. The effects of adhesive type, defect length and thickness of carbon fiber plate on the reinforcement effect and failure mode were studied. The results show that the reinforcement effect of CFRP plate is significant, and the tensile strength of the specimen is signifi-cantly improved. Different adhesives have a great influence on the failure mode of the specimen. The specimen made of HJY adhesive is mainly destroyed by the adhesive, while the debonding phenomenon of the adhesive/steel appears in both Sika30 adhesive and WSB adhesive. With the increase of the defect length, the failure mode changes from the failure of CFRP plate to the failure of CFRP plate, steel plate or adhesive/steel debonding. The tensile strength of the specimen is less affected by the type of adhesive, but more affected by the size of the defect. When the defect increases, the tensile strength of the specimen decreases significantly. Based on the cohesive force model, the static mechanical tests were numerically simulated. The finite element analysis shows that the damage of adhesive starts from near the defect and then extends to both ends. However, increasing the thickness of CFRP plate can significantly increase the tensile strength of the specimen.

     

  • loading
  • [1]
    李腾, 宁志华, 吴嘉瑜. CFRP加固钢板的粘结界面剥离破坏[J]. 复合材料学报, 2021, 38(12): 4090-4105.

    LI Teng, NING Zhihua, WU Jiayu. CFRP reinforced steel plate bonding interface stripping damage [J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4090-4105(in Chinese).
    [2]
    张鹏, 桂金洋, 邓宇, 等. 偏心受拉作用下预应力CFRP筋-型钢混凝土构件抗裂试验[J]. 复合材料学报, 2021, 38(3):920-931.

    ZHANG Peng, GUI Jinyang, DENG Yu, et al. Experimental study on crack resistance of prestressed CFRP reinforced steel concrete members under eccentric tension[J]. Acta Materialia Sinica,2021,38(3):920-931(in Chinese).
    [3]
    姜震宇, 王春江, 李向民,等. CFRP加固H型损伤钢梁的扩展有限元分析[J]. 力学季刊, 2012, 33(4):649-656. doi: 10.3969/j.issn.0254-0053.2012.04.019

    JIANG Zhenyu, WANG Chunjiang, LI Xiangmin, et al. Extended finite element analysis of CFRP reinforced H-type damaged steel beams[J]. Chinese Quarterly of Mechanics,2012,33(4):649-656(in Chinese). doi: 10.3969/j.issn.0254-0053.2012.04.019
    [4]
    AP A, IH B. Steel beam strengthening with UHM CFRP strip panels[J]. Engineering Structures, 2021, 226: 111395.
    [5]
    张依睿, 魏洋, 柏佳文, 等. 纤维增强聚合物复合材料-钢复合圆管约束混凝土轴压性能预测模型[J]. 复合材料学报, 2019, 36(10):2478-2485.

    ZHANG Yirui, WEI Yang, BAI Jiawen, et al. Prediction model of axial compressive performance of concrete constrained by fiber reinforced polymer composites-steel composite circular pipe[J]. Acta Materiae Compistae Sinica,2019,36(10):2478-2485(in Chinese).
    [6]
    杨凤祥, 陈静芬, 陈善富, 等. 基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测[J]. 复合材料学报, 2020, 37(9):2207-2222.

    YANG Fengxiang, CHEN Jingfen, CHEN Shanfu, et al. Failure strength prediction of composite laminates based on nonlinear three-dimensional damage constitutive model[J]. Acta Materiae Compistae Sinica,2020,37(9):2207-2222(in Chinese).
    [7]
    WANG Z, XIAN G J. Effects of thermal expansion coefficients discrepancy on the CFRP and steel bonding[J]. Construction and Building Materials,2021,269:121356.
    [8]
    WANG Z Y, WANG Q Y. Fatigue strength of CFRP strengthened welded joints with corrugated steel plates[J]. Composites,2015,72:30-39.
    [9]
    FENG B, WANG X, WU Z S, et al. Performance of anchorage assemblies for CFRP cables under fatigue loads[J]. Structures, 2021, 29: 947-953.
    [10]
    YU Q Q, ZHAO X L, AL-MAHAIDI R, et al. Tests on cracked steel plates with different damage levels strengthened by CFRP laminates[J]. International Journal of Structural Stability & Dynamics,2014,14(6):1450018.
    [11]
    杨怡, 黄炽辉, 吴作栋. 基于双剪实验的CFRP-钢板界面粘结性能研究[J]. 中山大学学报(自然科学版), 2021, 60(6): 62-70.

    YANG Yi, HUANG Chihui, WU Zuodong. Study on bonding performance of CFRP-steel plate interface based on double shear test[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni (Natural Science Edition), 2021, 60(6): 62-70(in Chinese)
    [12]
    黎文婧, 黄辉, 贾彬, 等. 碳纤维布-钢界面黏结性能试验研究[J]. 工业建筑, 2019, 49(3):24-28, 91.

    LI Wenjing, HUANG Hui, JIA Bin, et al. Experimental study on bonding properties of carbon fiber sheets-steel interface[J]. Industrial Building,2019,49(3):24-28, 91(in Chinese).
    [13]
    姜丰, 史亚龙, 王清远. CFRP加固开孔钢板的静力力学性能研究[J]. 四川理工学院学报(自然科学版), 2018, 31(2):43-49.

    JIANG Feng, SHI Yalong, WANG Qingyuan. Study on static mechanical properties of CFRP reinforced open-hole steel plate[J]. Journal of Sichuan University of Science and Technology (Natural Science Edition),2018,31(2):43-49(in Chinese).
    [14]
    张宁, 岳清瑞, 杨勇新, 等. 碳纤维布加固钢结构疲劳试验研究[J]. 工业建筑, 2004(4):19-21, 30. doi: 10.3321/j.issn:1000-8993.2004.04.005

    ZHANG Ning, YUE Qingrui, YANG Yongxin, et al. Fatigue test of steel structure reinforcement with carbon fiber sheets[J]. Industrial Building,2004(4):19-21, 30(in Chinese). doi: 10.3321/j.issn:1000-8993.2004.04.005
    [15]
    陈卓异, 彭彦泽, 李传习, 等. 高温下双搭接钢-CFRP板胶粘界面力学性能试验[J]. 复合材料学报, 2021, 38(2):449-460.

    CHEN Zhuoyi, PENG Yanze, LI Chuanxi, GUO Jing. Experimental study on mechanical properties of AdHESive interface between double lap steel and CFRP plate at high temperature[J]. Acta Materiae Compositae Sinica,2021,38(2):449-460(in Chinese).
    [16]
    叶华文, KNIG Christian, UMMENHOFER Thomas, 等. 预应力CFRP板加固钢板受拉疲劳性能试验研究[J]. 西南交通大学学报, 2009, 44(6):823-829. doi: 10.3969/j.issn.0258-2724.2009.06.005

    YE Huawen, KNIG Christian, UMMENHOFER Thomas, et al. Experimental study on tensile fatigue behavior of steel plate strengthened by prestressed CFRP plate[J]. Journal of Southwest Jiaotong University,2009,44(6):823-829(in Chinese). doi: 10.3969/j.issn.0258-2724.2009.06.005
    [17]
    HE J, XIAN G G, ZHANG Y X. Numerical modelling of bond behaviour between steel and CFRP laminates with a ductile adhesive[J]. International Journal of Adhesion and Adhesives,2021,104:102753.
    [18]
    伍希志, 林彬, 程军圣, 等. 裂纹钢板的止裂孔与CFRP加固及其疲劳寿命预测[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(2):154-158.

    WU Xizhi, LIN Bin, CHENG Junsheng, et al. Crack stopper and CFRP reinforcement of cracked steel plate and fatigue life prediction[J]. Journal of Tianjin University (Natural Science and Engineering Technology Edition),2017,50(2):154-158(in Chinese).
    [19]
    李传习, 柯璐, 陈卓异, 等. CFRP-钢界面粘结性能试验与数值模拟[J]. 复合材料学报, 2018, 35(12):3534-3546.

    LI Chuanxi, KE Lu, CHEN Zhuoyi, et al. Experimental and numerical simulation of interfacial bonding properties of CFRP steel[J]. Acta Materiae Compositae Sinica,2018,35(12):3534-3546(in Chinese).
    [20]
    中华人民共和国国家质量监督检验检疫总局. 金属材料室温拉伸试验方法: GB/T 228—2002[S]. 北京: 中国标准出版社, 2002.

    General Administration of Quality Supervision, Inspection and Quarantine of the People‘s Republic of China. Metallic materials-Tensile testing at ambient temperature: GB/T 228—2002[S]. Beijing: China Standars Press, 2002
    [21]
    刘建华, 曹东, 张晓云, 等. 树脂基复合材料T300/5405的吸湿性能及湿热环境对力学性能的影响[J]. 航空材料学报, 2010, 30(4):75-80. doi: 10.3969/j.issn.1005-5053.2010.4.015

    LIU Jianhua, CAO Dong, ZHANG Xiaoyun, et al. Hygrosco-pic properties of resin matrix composites T300/5405 and the effect of hot and humid environment on mechanical properties[J]. Journal of Aeronautical Materials,2010,30(4):75-80(in Chinese). doi: 10.3969/j.issn.1005-5053.2010.4.015
    [22]
    王云英, 刘杰, 孟江燕, 等. 纤维增强聚合物基复合材料老化研究进展[J]. 材料工程, 2011(7):85-89. doi: 10.3969/j.issn.1001-4381.2011.07.018

    WANG Yunying, LIU Jie, MENG Jiangyan, et al. Research progress on aging of fiber reinforced polymer matrix composites[J]. Journal of Materials Engineering,2011(7):85-89(in Chinese). doi: 10.3969/j.issn.1001-4381.2011.07.018
    [23]
    AOKI R, HIGUCHI R, YOKOZEKI T. Fatigue simulation for progressive damage in CFRP laminates using intra-laminar and inter-laminar fatigue damage models[J]. International Journal of Fatigue,2020,143:106015.
    [24]
    NICOLO G, EDMUND T, COCKS A C F. Coupling a discrete twin model with cohesive elements to understand twin-induced fracture[J]. International Journal of Fracture,2021,227:173-192.
    [25]
    WEILLSG N, SLUYS L J. A new method for modeling cohe-sive cracks using finite elements[J]. International Journal for Numerical Methods in Engineering,2001,50(12):2667-2682.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (767) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return