Volume 39 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
SUN Long, REN Xin, ZHANG Yi, et al. An auxetic tubular structure with tuneable stiffness[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1813-1823. doi: 10.13801/j.cnki.fhclxb.20210531.001
Citation: SUN Long, REN Xin, ZHANG Yi, et al. An auxetic tubular structure with tuneable stiffness[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1813-1823. doi: 10.13801/j.cnki.fhclxb.20210531.001

An auxetic tubular structure with tuneable stiffness

doi: 10.13801/j.cnki.fhclxb.20210531.001
  • Received Date: 2021-04-06
  • Accepted Date: 2021-05-19
  • Rev Recd Date: 2021-05-10
  • Available Online: 2021-05-31
  • Publish Date: 2022-04-01
  • Auxetic metamaterials have attracted great attention due to their indentation resistance, shear resistance, synclastic behaviour, fracture toughness and energy absorption properties. As one branch of auxetics, the tubular structure with negative Poisson’s ratio has potential to be used in engineering, medical treatment, vehicle and other fields. However, studies on mechanical properties of auxetic tubular structures are limited in both tension and compression in the current literature, and auxetic tubular structures tend to exhibit low stiffness ratio due to the existence of internal holes. In this paper, a novel type of auxetic tubular structure with tuneable stiffness was developed, and finite element analysis and experimental study were carried out on the parameters of different rotation modes, the degree of advanced compaction and the height of deformation zone. The results show that the stiffness of auxetic tubes with tuneable stiffness can be turned by adjusting different proportions of compaction point, and the h value can be used to reduce the error between the designed proportion and real proportion. Auxetic behaviour of the tubes with tuneable stiffness is not significantly weakened. The auxetic tubular structures with tuneable stiffness proposed in this paper bring about an innovative design concept and have good application prospects in protection engineering.

     

  • loading
  • [1]
    EVANS K E. Auxetic polymers: A new range of materials[J]. Endeavour,1991,15(4):170-174. doi: 10.1016/0160-9327(91)90123-S
    [2]
    YANG S, QI C, WANG D, et al. A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores[J]. Advances in Mechanical Engineering,2015,5:589216.
    [3]
    CHOI J B, LAKES R S. Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: Experiment and analysis[J]. International Journal of Fracture,1996,80(1):73-83. doi: 10.1007/BF00036481
    [4]
    CARNEIRO V H, MEIRELES J, PUGA H. Auxetic materials-A review[J]. Materials Science Poland,2013,31(4):561-571. doi: 10.2478/s13536-013-0140-6
    [5]
    ALDERSON A, ALDERSON K L, CHIRIMA G, et al. The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs[J]. Composites Science and Technology,2010,70(7):1034-1041. doi: 10.1016/j.compscitech.2009.07.010
    [6]
    LAKES R. Foam structures with a negative Poisson’s ratio[J]. Science,1987,235:384-387.
    [7]
    王鲁, 姜秉元. 负泊松比复合材料裂纹尖端应力场[J]. 复合材料学报, 1996, 13(3):112-117.

    WANG Lu, JIANG Bingyuan. Neartip stress fields for crack in composite with negative Poisson’s ratio[J]. Acta Materiae Compositae Sinica,1996,13(3):112-117(in Chinese).
    [8]
    IMBALZANO G, TRAN P, NGO T D, etal. A numerical study of auxetic composite panels under blast loadings[J]. Composite Structures,2016,135:339-352. doi: 10.1016/j.compstruct.2015.09.038
    [9]
    张伟, 侯文彬, 胡平. 新型负泊松比多孔吸能盒平台区力学性能[J]. 复合材料学报, 2015, 32(2):534-541.

    ZHANG Wei, HOU Wenbin, HU Ping. Mechanical properties of new negative Poisson’s ratio crush box with cellular structure in plateau stage[J]. Acta Materiae Compositae Sinica,2015,32(2):534-541(in Chinese).
    [10]
    YANG L, HARRYSSON O, WEST H, et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids and Structures,2015,69-70:475-490. doi: 10.1016/j.ijsolstr.2015.05.005
    [11]
    苏继龙, 吴金东, 刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J]. 材料工程, 2019, 47(8):49-58.

    SU Jilong, WU Jindong, LIU Yuanli. Progress in elastic property and impact resistance of honeycomb structure mechanical metamaterial[J]. Journal of Materials Engineering,2019,47(8):49-58(in Chinese).
    [12]
    任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3):656-687.

    REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(3):656-687(in Chinese).
    [13]
    GRIMA J N, MANICARO E, ATTARD D. Auxetic behaviour from connected different-sized squares and rectangles[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,2011,467(2126):439-458. doi: 10.1098/rspa.2010.0171
    [14]
    LUO C, HAN C Z, ZHANG X Y, et al. Design, manufacturing and applications of auxetic tubular structures: A review[J]. Thin-Walled Structures,2021,163:107682. doi: 10.1016/j.tws.2021.107682
    [15]
    ALI M N, REHMAN I U. An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer: development and in vitro mechanical analysis[J]. Journal of Materials: Science Materials in Medicine,2011,22(11):2573-2581. doi: 10.1007/s10856-011-4436-y
    [16]
    MIGLIAVACCA F, PETRINI L, MASSAROTTI P, et al. Stainless and shape memory alloy coronary stents: A computational study on the interaction with the vascular wall[J]. Biomechanics and Modeling in Mechanobiology,2004,2(4):205-217.
    [17]
    KURIBAYASHI K, TSUCHIYA K, YOU Z, et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[J]. Materials Science and Engineering: A,2006,419(1-2):131-137. doi: 10.1016/j.msea.2005.12.016
    [18]
    GRIMA J N, MIZZI L, AZZOPARDI K M, et al. Auxetic perforated mechanical metamaterials with randomly oriented cuts[J]. Advanced Materials,2016,28(2):385-389. doi: 10.1002/adma.201503653
    [19]
    REN X, LIU F C, ZHANG X Y, et al. Numerical investigation of tubular structures generated by cutting method and pattern scale factor (PSF) method[J]. Pigment & Resin Technology, 2019, 50(5): 419-425.
    [20]
    REN X, SHEN J H, GHAEDIZADEH A, et al. A simple auxetic tubular structure with tuneable mechanical properties[J]. Smart Materials and Structures,2016,25(6):65012. doi: 10.1088/0964-1726/25/6/065012
    [21]
    GAO Q, ZHAO X, WANG C Z, et al. Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading[J]. Materials & Design,2018,143:120-130.
    [22]
    LEE W, JEONG Y, YOO J, et al. Effect of auxetic structures on crash behavior of cylindrical tube[J]. Composite Structures,2019,208:836-846. doi: 10.1016/j.compstruct.2018.10.068
    [23]
    KARNESSIS N, BURRIESCI G. Uniaxial and buckling mechanical response of auxetic cellular tubes[J]. Smart Materials and Structures,2013,22(8):84008. doi: 10.1088/0964-1726/22/8/084008
    [24]
    REN X, SHEN J H, PHUONG T, et al. Auxetic nail: Design and experimental study[J]. Composite Structures,2018,184:288-298. doi: 10.1016/j.compstruct.2017.10.013
    [25]
    ZHANG X Y, WANG X Y, REN X, et al. A novel type of tubular structure with auxeticity both in radial direction and wall thickness[J]. Thin-Walled Structures,2021,163:107758. doi: 10.1016/j.tws.2021.107758
    [26]
    HUR J M, SEO D S, KIM K, et al. Harnessing distinct deformation modes of auxetic patterns for stiffness design of tubular structures[J]. Materials & Design,2021,198:109376.
    [27]
    CHEN Q, PUGNO N M. In-plane elastic buckling of hierarchical honeycomb materials[J]. European Journal of Mechanics-A/Solids,2012,34:120-129. doi: 10.1016/j.euromechsol.2011.12.003
    [28]
    秦浩星, 杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4):1014-1023.

    QIN Haoxing, YANG Deqing. Functional element topology optimal method of metamaterial design with arbitrary negative Poisson’s ratio[J]. Acta Materiae Compositae Sinica,2018,35(4):1014-1023(in Chinese).
    [29]
    LI D, MA J, DONG L, et al. Stiff square structure with a negative Poisson's ratio[J]. Materials Letters,2017,188:149-151. doi: 10.1016/j.matlet.2016.11.036
    [30]
    LU Z X, LI X, YANG Z Y, et al. Novel structure with negative Poisson’s ratio and enhanced Young’s modulus[J]. Composite Structures,2016,138:243-252. doi: 10.1016/j.compstruct.2015.11.036
    [31]
    LOGAKANNAN K P, RAMACHANDRAN V, RENGASWAMY J, et al. Quasi-static and dynamic compression behaviors of a novel auxetic structure[J]. Composite Structures,2020,254:112853. doi: 10.1016/j.compstruct.2020.112853
    [32]
    REN X, SHEN J H, GHAEDIZADEH A, et al. Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties[J]. Smart Materials and Structures,2015,24(9):95016. doi: 10.1088/0964-1726/24/9/095016
    [33]
    ZHANGX Y, REN X. A simple methodology to generate metamaterials and structures with negative Poisson’s ratio[J]. Physica Status Solidi (B),2020,257(10):2000439. doi: 10.1002/pssb.202000439
    [34]
    REN X, SHEN J H, TRAN P, et al. Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial[J]. Materials& Design,2018,139:336-342.
    [35]
    GRIMA J N, ZAMMIT V, GATT R. Auxetic behaviour from rotating semirigid units[J]. Physica Status Solidi (B),2007,244(3):866-882. doi: 10.1002/pssb.200572706
    [36]
    LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids[J]. Journal of Cellular Plastics,2006,42:371-392. doi: 10.1177/0021955X06063519
    [37]
    SHEN J H, XIE Y M, HUANG X D, et al. Mechanical properties of luffa sponge[J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,15:141-152. doi: 10.1016/j.jmbbm.2012.07.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (1645) PDF downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return