Volume 38 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
DENG Yunfei, CAI Xiongfeng, LI Xiang, et al. Experimental study on oblique impact of steel balls on glass fiber-stainless steel mesh hybrid reinforced epoxy laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2869-2881. doi: 10.13801/j.cnki.fhclxb.20210406.001
Citation: DENG Yunfei, CAI Xiongfeng, LI Xiang, et al. Experimental study on oblique impact of steel balls on glass fiber-stainless steel mesh hybrid reinforced epoxy laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2869-2881. doi: 10.13801/j.cnki.fhclxb.20210406.001

Experimental study on oblique impact of steel balls on glass fiber-stainless steel mesh hybrid reinforced epoxy laminates

doi: 10.13801/j.cnki.fhclxb.20210406.001
  • Received Date: 2020-08-20
  • Accepted Date: 2021-03-15
  • Rev Recd Date: 2021-03-10
  • Available Online: 2021-04-06
  • Publish Date: 2021-09-01
  • In order to study the damage characteristics of glass fiber-stainless steel mesh hybrid laminates under high-speed oblique impact, the impact experiments with an angle of 30° were carried out on glass fiber reinforced epoxy laminates with 2 mm thickness and glass fiber-stainless steel mesh hybrid reinforced epoxy laminates with one or three layers of 304 stainless steel mesh by using a one-stage air gun. The effects of 304 stainless steel mesh on the ballistic limit and energy absorption of laminated plates were revealed, and the damage characteristics and mechanism of laminated plates were analyzed. Based on the experiments, it is found that the ballistic limit of the laminates with three layers of stainless steel mesh is the highest, while the ballistic limit velocity of the laminate without stainless steel mesh is close to that of the laminate with one stainless steel mesh. The energy absorbed by the laminate firstly increases with the increase of projectile velocity, and then becomes stable, and increases rapidly finally. The failure modes of laminates are matrix crack, matrix fracture, delamination, tensile fracture and shear fracture of fiber and stainless steel wire tensile fracture. The delamination damage area of laminated plates increases firstly and then decreases with the increase of the velocity of projectile, and finally tends to be stable. When the velocity of the projectile is low, the laminate fiber mainly produces tensile fracture, matrix cracking and delamination damage. With the increase of the velocity of the projectile, compression shear fracture of the front fiber of the laminate gradually occurs, the matrix is broken, and the back fiber has serious tensile tear.

     

  • loading
  • [1]
    VARAS D, ARTERO-GUERRERO J A, PERNAS-SANCHEZ J, et al. Analysis of high velocity impacts of steel cylinders on thin carbon/epoxy woven laminates[J]. Composite Structures,2013,95:623-629. doi: 10.1016/j.compstruct.2012.08.015
    [2]
    TANG Z, HANG C, SUO T, et al. Numerical and experimental investigation on high impact on composite panels[J]. International Journal of Impact Engineering,2017,105:102-108. doi: 10.1016/j.ijimpeng.2016.05.016
    [3]
    PERNAS-SANCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Experimental analysis of normal and oblique high velocity impacts on carbon/epoxy tape laminates[J]. Composites Part A: Applied Science and Manufacturing,2014,60:24-31. doi: 10.1016/j.compositesa.2014.01.006
    [4]
    ALIREZA T F, GHOLAMHOSSEIN L, HAMED A, et al. Experimental and numerical investigation of the impact response of elastomer layered fiber metal laminates (EFMLs)[J]. Composite Structures,2020,245:112264. doi: 10.1016/j.compstruct.2020.112264
    [5]
    KHORAMISHAD H, ALIKHANI H, DARIUSHIB S. An experimental study on the effect of adding multi-walled carbon nanotubes on high-velocity impact behavior of fiber metal laminates[J]. Composite Structures,2018,201:561-569. doi: 10.1016/j.compstruct.2018.06.085
    [6]
    LEE D W, PARK B J, PARK S Y. Fabrication of high-stiffness fiber-metal laminates and study of theirbehavior under low-velocity impact load-ings[J]. Composite Structures,2018,189:61-69. doi: 10.1016/j.compstruct.2018.01.044
    [7]
    CARRILLOA J G, GONZALEZ-CANCHEA N G, FLORES-JOHNSONB E A, et al. Low velocity impact response of fibre metal laminates based on aramid fibre reinforced polypropylene[J]. Composite Structures,2019,220:708-716. doi: 10.1016/j.compstruct.2019.04.018
    [8]
    陈战辉, 万小朋, 王文智, 等. 层间混杂层合板弹道冲击损伤对比研究[J]. 航空工程进展, 2018, 9(4):599-602.

    CHEN Zhanhui, WAN Xiaopeng, WANG Wenzhi, et al. An experimental investigation on the damaged behavior of hybrid composite laminates under ballistic impact[J]. Advances in Aeronautical Science and Engineering,2018,9(4):599-602(in Chinese).
    [9]
    鲍子贺, 牛一凡, 严炎, 等. 混杂纤维复合材料力学性能及其低速冲击性能研究[J]. 塑料工业, 2018, 46(8):80-84. doi: 10.3969/j.issn.1005-5770.2018.08.019

    BAO Zihe, NIU Yifan, YAN Yan, et al. Investigation on the mechanical and low velocity impact properties of hybrid composite materials[J]. China Plastics Industry,2018,46(8):80-84(in Chinese). doi: 10.3969/j.issn.1005-5770.2018.08.019
    [10]
    周霞, 李凯, 陈成杭, 等. 纤维/镁合金混杂层合板低速冲击响应及损伤模拟[J]. 振动与冲击, 2018, 37(2):1-9.

    ZHOU Xia, LI Kai, CHEN Chenghang, et al. Low-velocity impact response and damage simulation of fiber/magnesium alloy composite laminates[J]. Journal of Vibration and Shock,2018,37(2):1-9(in Chinese).
    [11]
    AL-HAJAJ Z, SY B L, BOUGHERARA H, et al. Impact properties of a new hybrid composite material made from woven carbon fibres plus flax fibres in an epoxy matrix[J]. Composite Structures,2019,208:346-356. doi: 10.1016/j.compstruct.2018.10.033
    [12]
    易凯, 孙建波, 杨智勇, 等. 混杂纤维复合材料层板的抗弹冲击性能[J]. 宇航材料工艺, 2019, 1:82-85. doi: 10.12044/j.issn.1007-2330.2019.02.016

    YI Kai, SUN Jianbo, YANG Zhiyong, et al. Ballistic impact resistance of hybrid composite materials[J]. Aerospace Materials & Technology,2019,1:82-85(in Chinese). doi: 10.12044/j.issn.1007-2330.2019.02.016
    [13]
    苏波, 张抟, 于国军, 等. 平纹织物混杂纤维复合材料低速冲击性能试验研究[J]. 玻璃钢/复合材料, 2019, 11:58-63.

    SU Bo, ZHANG Tuan, YU Guojun, et al. Experimental study on low speed impact properties of plain fabric hybrid fiber-reinforced plastics[J]. Fiber Reinforced Plastics/Composites,2019,11:58-63(in Chinese).
    [14]
    PAPA I, BOCCARUSSO L, LANGELLA A, et al. Carbon/glass hybrid composite laminates in vinylester resin: Bending and low velocity impact tests[J]. Composite Structures,2020,232:111571.
    [15]
    Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M—14[S]. ASTM International. 2014, 1-13.
    [16]
    Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264/D7264M—15[S]. ASTM International. 2015.
    [17]
    ASTM International. Standard text method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: ASTM D6641/D6641M—14[S]. West Conshohocken: ASTM International, 2014.
    [18]
    KHODADADI A, LIAGHAT G, REZA BAHRAMIAN A, et al. High velocity impact behavior of Kevlar/rubber and Kevlar/epoxy composites: A comparative study[J]. Composite Structures,2019,216:159-167. doi: 10.1016/j.compstruct.2019.02.080
    [19]
    RECHT R F, IPSON T W. Ballistic perforation dynamics[J]. Journal of Applied Mechanics,1963,30(3):384-391. doi: 10.1115/1.3636566
    [20]
    叶辉, 朱艳荣, 蒲永锋. 纤维增强复合材料应变率效应的数值仿真[J]. 吉林大学学报(工学版), 2019, 49(5):1622-1629.

    YE Hui, ZHU Yanrong, PU Yongfeng. Numerical simulation of strain rate effect of fiber-reinforced composites[J]. Journal of Jilin University (Engineering and Technology Edition),2019,49(5):1622-1629(in Chinese).
    [21]
    SREEKANTHA REDDY T, MOGULANNA K, GOPINADHA REDDY K, et al. Effect of thickness on behaviour of E-glass/epoxy composite laminates under low velocity impact[J]. Procedia Structural Integrity,2016,14:265-272.
    [22]
    吴盼, 阎建华, 俞建勇, 等. 碳纤/环氧复合材料层合板低速冲击损伤机理研究[J]. 玻璃钢/复合材料, 2016(3):31-37.

    WU Pan, YAN Jianhua, YU Jianyong, et al. Low-velocity impact damage mechanism of carbon/epoxy composite laminates[J]. Fiber Reinforced Plastics/Composites,2016(3):31-37(in Chinese).
    [23]
    KHODADADI A, LIAGHAT G, AHMADI H, et al. Impact response of Kevlar/rubber composite[J]. Composites Science and Technology,2019,184:107880. doi: 10.1016/j.compscitech.2019.107880
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(4)

    Article Metrics

    Article views (789) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return