Volume 38 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
HUANG Youpeng, WU Fuli, LI Bing, et al. Preparation and visible light catalytic performance of WO3/g-C3N4 composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4265-4272. doi: 10.13801/j.cnki.fhclxb.20210303.001
Citation: HUANG Youpeng, WU Fuli, LI Bing, et al. Preparation and visible light catalytic performance of WO3/g-C3N4 composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4265-4272. doi: 10.13801/j.cnki.fhclxb.20210303.001

Preparation and visible light catalytic performance of WO3/g-C3N4 composite photocatalyst

doi: 10.13801/j.cnki.fhclxb.20210303.001
  • Received Date: 2020-12-09
  • Accepted Date: 2021-02-12
  • Available Online: 2021-03-03
  • Publish Date: 2021-12-01
  • The WO3/graphite phase carbon nitride (g-C3N4) composites were prepared by mixing self-made layered g-C3N4 with WO3 nanoplates and afterward calcination process, and were characterized by XRD, SEM, TEM, UV-Vis DRS and PL. The results show that g-C3N4 presents graphene-like layered structure, and WO3 indicates nanoplate structure, and scatters on the surfaces of g-C3N4. After compounding with WO3, the absorption edge of UV-Vis spectrum shifts to red, which widens the response of g-C3N4 to visible light. The photocatalytic degradation properties of WO3/g-C3N4 were examined using rodamine B (RhB) as a simulated pollutant. When the mass ratio of WO3/g-C3N4 is 1∶5, the best photocatalytic activity is obtained. After 60 min of visible light irradiation, the degradation rate of RhB can reach 94.9%. The photocatalyst shows good stability, as the photodegradation rate of RhB reaches 88.9% after repeated use of the same photocatalyst for 6 times. The study of photocatalytic mechanism shows that superoxide radical (·O2) is the main active species for photocatalytic degradation of RhB.

     

  • loading
  • [1]
    FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-38. doi: 10.1038/238037a0
    [2]
    LIU Y, JI H W, ZHOU D F, et al. Controllable synthesis and photocatalytic activity of TiO2 /LaFeO3 micro-nanofibers[J]. Chemical Journal of Chinese Universities,2014,35(1):19-25.
    [3]
    WATANBE A, KOTAKE K, KAMATE K, et al. Photoelectrochemical behavior of self-assembled Ag/Co plasmonic nanostructures capped with TiO2[J]. The Journal of Physical Chemistry Letters,2014,5(1):25-29. doi: 10.1021/jz402320p
    [4]
    ZHANG L Z, ZHENG Z, YU J C. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[J]. Chemistry of Materials,2003,15(11):2280-2286. doi: 10.1021/cm0340781
    [5]
    WANG M, JU P, LI J J, et al. Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting[J]. Sustainable Chemistry,2017,5(9):7878-7886.
    [6]
    SU Q, SUN J, WANG J Q, et al. Urea-derived graphitic carbon nitride as an efficient hetero geneous catalyst for CO2 conversion into cyclic carbonates[J]. Catalysis Science & Technology,2014,4:1556. doi: 10.1039/c3cy00921a
    [7]
    WANG X C, MAEDA K, THOMAS A. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials,2009,8:76-80. doi: 10.1038/nmat2317
    [8]
    IQBAL W, DONG C Y, XING M Y, et al. Eco-friendly one-potsyn thesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity[J]. Catalysis Science & Technology,2017,7:1726. doi: 10.1039/C7CY00286F
    [9]
    TONDA S, KUMAR S, KANDULA S, et al. Fe-doped and mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight[J]. Journal of Materials Chemistry A,2014,2(19):6772. doi: 10.1039/c3ta15358d
    [10]
    FU J, TIAN Y, CHANG B, et al. BiOBr-carbon nitride heterojunctions: Synthesis enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry A,2012,22(39):21159-21166. doi: 10.1039/c2jm34778d
    [11]
    ADHIKARI S, HE Y K. Heterojunction C3N4/MoO3 microcomposite for highly efficient photocatalytic oxidation of Rhodamine B[J]. Applied Surface Science,2020,511(5):145595.
    [12]
    CHENG C, SHI J W, HU Y C, et al. WO3/g-C3N4 composites: One-pot preparation and enhanced photocatalytic H2 production under visible light irradiation[J]. Nanotechnology,2017,28(16):164002. doi: 10.1088/1361-6528/aa651a
    [13]
    XU H T, XIAO R, HUANG J R, et al. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production[J]. Chinese Journal of Catalysis,2020,42(1):107-114.
    [14]
    CHEN S, HU Y, MENG S, FU X. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4/WO3[J]. Applied Catalysis B: Environmental,2014,150:564-573.
    [15]
    KE D N, LIU H J, PENG T Y, et al. Preparation and photo catalytic activity of WO3/TiO2 nanocomposite particles[J]. Materials Letters,2008,62(3):447-450. doi: 10.1016/j.matlet.2007.05.060
    [16]
    NOGUEIRA H I S, CAVALEIRO A M V, ROCHA J, et al. Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids[J]. Materials Research Bulletin,2004,39(4):683-693.
    [17]
    BALAZSI C, PFEIFER J. Development of tungsten oxide hydrate phasesduring precipitation, room temperature ripening and hydrothermal treatment[J]. Solid State Ionics,2002,151(1):353-358.
    [18]
    JANAKY C, RAJESHWAR K, TACCONI N R, et al. Tungsten-based oxide semiconductors for solar hydrogen generation[J]. Catalysis Today,2013,199(1):53-64.
    [19]
    DONG F, LI Y H, WANG Z Y, et al. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation[J]. Applied Surface Science,2015,358(1):393-403.
    [20]
    SZILAGYI I M, FORIZS B, ROSSELE O, et al. WO3 photocatalysts: Influence of structure and composition[J]. Journal of Catalysis,2012,294:119-127. doi: 10.1016/j.jcat.2012.07.013
    [21]
    ZHOU X J, SHAO C L, YANG S, et al. Heterojunction of g-C3N4/BiOI immobilized on flexible electrospun poly-acrylonitrile nanofibers: Facile preparation and enhanced visible photocatalytic Activity for floating photocatalysis[J]. ACS Sustainable Chemistry & Engineering,2018,6(2):2316-2323.
    [22]
    SINGH J, ARORA A, BASU S. Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light[J]. Journal of Alloys and Compounds,2019,808:151734. doi: 10.1016/j.jallcom.2019.151734
    [23]
    HUANG L Y, XU H, LI Y P, et al. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Transactions,2013,42(24):8606-8616. doi: 10.1039/c3dt00115f
    [24]
    LIU H, JIN Z T, XU Z Z, et al. Fabrication of ZnIn2 S4-g-C3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants[J]. RSC Advances,2015,5(119):97951-97961. doi: 10.1039/C5RA17028A
    [25]
    HAI B T, BUI T H, SCHINDRA K R, et al. H2O2-assisted photocatalysis for removal of natural organic matter using nanosheet C3N4-WO3 composite under visible light and the hybrid system with ultrafiltration[J]. Chemical Engineering Journal,2020,399:125733. doi: 10.1016/j.cej.2020.125733
    [26]
    ZHU B C, XIA P F, HO W K, et al. Isoelectric point and adsorption activity of porous g-C3N4[J]. Applied Surface Science,2015,344:188-189. doi: 10.1016/j.apsusc.2015.03.086
    [27]
    LI X X, WAN T, QIU J Y, et al. In-situ photocalorimetry-fluorescence spectroscopy studies of RhB photocatalysis over Z-scheme g-C3N4@Ag@Ag3PO4 nanocomposites: A pseudo-zero-order rather than a first-order process[J]. Applied Catalysis: Environmental,2017,217:591-602. doi: 10.1016/j.apcatb.2017.05.086
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (1602) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return