Volume 38 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
WANG Zhaoyao, BI Jihong, ZHAO Yun, et al. Calculation model for pullout behavior of inclined hooked-end steel fiber in cement-based materials[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4379-4392. doi: 10.13801/j.cnki.fhclxb.20210207.003
Citation: WANG Zhaoyao, BI Jihong, ZHAO Yun, et al. Calculation model for pullout behavior of inclined hooked-end steel fiber in cement-based materials[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4379-4392. doi: 10.13801/j.cnki.fhclxb.20210207.003

Calculation model for pullout behavior of inclined hooked-end steel fiber in cement-based materials

doi: 10.13801/j.cnki.fhclxb.20210207.003
  • Received Date: 2020-12-10
  • Accepted Date: 2021-01-25
  • Available Online: 2021-02-07
  • Publish Date: 2021-12-01
  • It is well-known that the hooked-end steel fiber is one of the most widely-used type of steel fiber in structural engineering, and the pullout behavior of a single steel fiber is significant for determining the tensile constitutive and the tensile toughness of steel fiber reinforced concrete. In order to obtain a theoretical analysis method which can effectively predict the pullout load-end displacement curves of inclined hooked-end steel fiber, the inclined pullout process of the hooked-end steel fiber was divided into three states: fully bonding stage, debonding stage and pullout slipping stage. A novel bond shear stresses-end displacement model was established considering the different steel fiber pullout stages and the damage of the matrix hole. A theoretical analysis model that can predict the load-slip curve of the pullout behavior of inclined hooked-end steel fiber was proposed by considering the plastic deformation of the steel fiber, the additional friction, spalling and snubbing effects of the matrix caused by the fiber pullout inclination. A simplified model was also proposed based on the theoretical model. The existing experimental data were selected to verify and evaluate the proposed calculation model. The results show that the two models proposed in this paper can effectively predict the process of hooked-end steel fiber inclined pullout. And the two models have high calculation accuracy and low coefficient of variation, which provide a theoretical reference for further analysis of the effect of steel fiber on the enhancement of tensile properties of cement-based materials.

     

  • loading
  • [1]
    韩嵘, 赵顺波, 曲福来. 钢纤维混凝土抗拉性能试验研究[J]. 土木工程学报, 2006, 39(11):63-67. doi: 10.3321/j.issn:1000-131X.2006.11.010

    HAN Rong, ZHAO Shunbo, QU Fulai. Experimental study on the tensile performance of steel flber reinforced concrete[J]. China Civil Engineering Journal,2006,39(11):63-67(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.11.010
    [2]
    卿龙邦, 聂雅彤, 慕儒. 钢纤维对水泥基复合材料抗起裂特性的影响[J]. 复合材料学报, 2017, 34(8):1862-1869.

    QING Longbang, NIE Yatong, MU Ru. Influence of steel fibres on the resistance to crack initiation of cementitious composites[J]. Acta Materiae Compositae Sinica,2017,34(8):1862-1869(in Chinese).
    [3]
    梁兴文, 胡翱翔, 于婧, 等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3):722-731.

    LIANG Xingwen, HU Aoxiang, YU Jing, et al. Effect of steel fibers on the flexural response of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(3):722-731(in Chinese).
    [4]
    NAAMAN A E. Engineered steel fibers with optimal properties for reinforcement of cement composites[J]. Journal of Advanced Concrete Technology,2003,1(3):241-252. doi: 10.3151/jact.1.241
    [5]
    秦鸿根, 刘斯凤, 孙伟, 等. 钢纤维掺量和类型对混凝土性能的影响[J]. 建筑材料学报, 2003(4):364-368. doi: 10.3969/j.issn.1007-9629.2003.04.005

    QIN Honggen, LIU Sifeng, SUN Wei, et al. Effect of types and volume percentage of steel fiber on properties of concrete[J]. Journal of Building Materials,2003(4):364-368(in Chinese). doi: 10.3969/j.issn.1007-9629.2003.04.005
    [6]
    许碧莞, 施惠生, JU Jiannwen Woody. 水泥基体中弓形钢纤维拔出耗能模型[J]. 同济大学学报(自然科学版), 2010, 38(8):1194-1199. doi: 10.3969/j.issn.0253-374x.2010.08.017

    XU Biwan, SHI Huisheng, JU Jiannwen Woody. Modeling pullout energy of hooked end steel fiber in cementitious matrices[J]. Journal of Tongji University (Natural Science),2010,38(8):1194-1199(in Chinese). doi: 10.3969/j.issn.0253-374x.2010.08.017
    [7]
    朱德举, 李向阳, 史才军, 等. 水泥基体中仿生钢纤维的拔出试验[J]. 湖南大学学报(自然科学版), 2018, 45(1):84-89.

    ZHU Deju, LI Xiangyang, SHI Caijun, et al. Pullout test of bio-inspired steel fiber from cementitious matrix[J]. Journal of Hunan University (Natural Sciences),2018,45(1):84-89(in Chinese).
    [8]
    ROBINS P, AUSTIN S, JONES P. Pull-out behaviour of hooked steel fibres[J]. Materials and Structures,2002,35:434-442. doi: 10.1007/BF02483148
    [9]
    NAAMAN A E, NAMUR G G, ALWAN J M, et al. Fiber pullout and bond slip. I: Analytical study[J]. Journal of Structural Engineering,1991,117:2769-2790. doi: 10.1061/(ASCE)0733-9445(1991)117:9(2769)
    [10]
    SHANNAG M J, BRINCKER R, HANSEN W. Pullout behavior of steel fibers from cement-based composites[J]. Cement and Concrete Research,1997,27(6):925-936. doi: 10.1016/S0008-8846(97)00061-6
    [11]
    GHODDOUSI P, AHMADI R, SHARIFI M. Fiber pullout model for aligned hooked-end steel fiber[J]. Canadian Journal of Civil Engineering,2010,37:1179-1188. doi: 10.1139/L10-053
    [12]
    SOETENS T, VAN-GYSEL A, MATTHYS S, et al. A semi-analytical model to predict the pull-out behaviour of inclined hooked-end steel fibres[J]. Construction and Building Materials,2013,43(2):253-265.
    [13]
    LARANJEIRA F, MOLINS C, AGUADO A. Predicting the pullout response of inclined hooked steel fibers[J]. Cement and Concrete Research,2010(40):1471-1487.
    [14]
    KULLAA J. Dimensional analysis of bond modulus in fiber pullout[J]. Journal of Structural Engineering,1996,122(7):783-787. doi: 10.1061/(ASCE)0733-9445(1996)122:7(783)
    [15]
    GAO Y, MAI Y, COTTERELL B. Fracture of fiber-reinforced materials[J]. Journal of Applied Mathematics and Physics,1988,39(4):550-572.
    [16]
    YANG S, HU X, LENG K, et al. Correlation between cohesive crack-tip local fracture energy and peak load in mortar beams[J]. Journal of Materials in Civil Engineering,2014,26(10):1-8.
    [17]
    CHANVILLARD G. Modeling the pullout of wire-drawn steel fibers[J]. Cement and Concrete Research,1999,29(7):1027-1037. doi: 10.1016/S0008-8846(99)00081-2
    [18]
    GEORGIADIS-STEFANIDI K, MISTAKIDIS E, PANTOUSA D, et al. Numerical modelling of the pull-out of hooked steel fibers form high-strength cementitious matrix, supplemented by experimental results[J]. Construction and Building Materials,2010,24:2489-2506. doi: 10.1016/j.conbuildmat.2010.06.007
    [19]
    CAILLEUX E, CUTARD T, BERNHART G. Pullout of steel fibers from a refractory castable: Experiment and modelling[J]. Mechanics of Materials,2005,37(4):427-445. doi: 10.1016/j.mechmat.2004.02.001
    [20]
    LEUNG C K Y, SHAPIRO N. Optimal steel fiber strength for reinforcement of cementitious materials[J]. Journal of Materials in Civil Engineering,1999,11(2):116-123. doi: 10.1061/(ASCE)0899-1561(1999)11:2(116)
    [21]
    LI V C, WANG Y, BACKER S. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix[J]. Composites,1990,21(2):132-140. doi: 10.1016/0010-4361(90)90005-H
    [22]
    XU B W, JU J W, SHI H S. Progressive micromechanical modeling for pullout energy of hooked-end steel fiber in cement-based composites[J]. International Journal of Damage Mechanics,2011,20(6):922-938. doi: 10.1177/1056789510385260
    [23]
    PARK J K, NGO T T, KIM D J. Interfacial bond characteristics of steel fibers embedded in cementitious composites at high rates[J]. Cement and Concrete Research,2019,123:1-17.
    [24]
    OUYANG C, PACIOS A, SHAH S P. Pullout of inclined fibers from cementitious matrix[J]. Journal of Engineering Mechanics,1994,120(12):2641-2659. doi: 10.1061/(ASCE)0733-9399(1994)120:12(2641)
    [25]
    ZHANG C, SHI C, WU Z, et al. Numerical and analytical modeling of fiber-matrix bond behaviors of high perfor-mance cement composite[J]. Cement and Concrete Research,2019,125:1-14.
    [26]
    FENG J, SUN W, WANG X, et al. Mechanical analyses of hooked fiber pullout performance in ultra-high-perfor-mance concrete[J]. Construction and Building Materials,2014,69:403-410. doi: 10.1016/j.conbuildmat.2014.07.049
    [27]
    ABU-LEBDEH T, HAMOUSH S, HEARD W, et al. Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites[J]. Construction and Building Materials,2011,25(1):39-46. doi: 10.1016/j.conbuildmat.2010.06.059
    [28]
    GENG Y P, LEUNG C K Y. Damage-based modeling of fiber pullout under variable compressive stress[J]. Journal of Engineering Mechanics,1997,123(4):342-349. doi: 10.1061/(ASCE)0733-9399(1997)123:4(342)
    [29]
    BREITENBUECHER R, MESCHKE G, SONG F, et al. Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths[J]. Structural Concrete,2014,15(2):126-135. doi: 10.1002/suco.201300058
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (1114) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return