Volume 38 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
SUN Haihao, SHI Yilei, LIU Weiqiang, et al. Theoretical prediction for effective thermal conductivity of composite materials with random structure[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2925-2933. doi: 10.13801/j.cnki.fhclxb.20201230.001
Citation: SUN Haihao, SHI Yilei, LIU Weiqiang, et al. Theoretical prediction for effective thermal conductivity of composite materials with random structure[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2925-2933. doi: 10.13801/j.cnki.fhclxb.20201230.001

Theoretical prediction for effective thermal conductivity of composite materials with random structure

doi: 10.13801/j.cnki.fhclxb.20201230.001
  • Received Date: 2020-09-17
  • Accepted Date: 2020-12-20
  • Available Online: 2020-12-30
  • Publish Date: 2021-09-01
  • Based on the random generate-growth method, a theoretical method employing linked lists was implemented to predict the effective thermal conductivity of fiber-reinforced composite materials with random structure, which has the feature of physical intuition and independent of mesh. The fiber perform of like-PICA (Phenolic impregnated carbon ablator) was studied to reveal the relevant factors that can influence the effective thermal conductivity. The results show that the effective thermal conductivity is not an intrinsic property and it may be related with the specimen size when it is close to fiber length. There is a positive nonlinear correlation between the fiber quantity per volume and the effective thermal conductivity. However, the effective thermal conductivity is not a uni-variate function of volume fraction and the concept of the effective length is present to describe the connectivity of fiber perform, which is negative correlation with the effective thermal conductivity.

     

  • loading
  • [1]
    STACKPOOLE M, SEPKA S, COZMUTA I. Post-flight evaluation of stardust sample return capsule forebody heatshield material[C]. 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.
    [2]
    COVINGTON M A, HEINEMANN J M, GOLDSTEING H E. Performance of a low density ablative heat shield material[J]. Journal of Spacecraft and Rockets,2008,45(4):854-864. doi: 10.2514/1.38249
    [3]
    PILLING M W, YATERS B, BLACK M A. The thermal conductivity of carbon fiber-reinforced composite[J]. Journal Of Materials Science & Technology,1979,14:1326.
    [4]
    陈则韶, 钱军, 叶一火. 复合材料等效导热系数的理论推算[J]. 中国科学技术大学学报, 1992, 22(4):416-424.

    CHEN Zeshao, QIAN Jun, YE Yihuo. Predicting theory of effective thermal conductivity of complex material[J]. Journal of China University of Science and Technology,1992,22(4):416-424(in Chinese).
    [5]
    程远贵. 耐火纤维的高温热物性研究[D]. 成都: 四川大学, 2001.

    CHENG Yuangui. Research on thermophysic properties of refracotry fiber under high temperature[D]. Chengdu: Sichuan University, 2001(in Chinese).
    [6]
    GORI F, CORASANTITI S, WOREK W M, et al. Theoretical prediction of thermal conductivity for thermal protection systems[J]. Applied Thermal Engineering,2012,49:124-130. doi: 10.1016/j.applthermaleng.2011.07.012
    [7]
    SCHUSTER J, GLOWANIA M. Thermal conductivities of three-dimensionally woven fabric composites[J]. Composites Science and Technology,2008,68(9):2085-2091. doi: 10.1016/j.compscitech.2008.03.024
    [8]
    夏彪, 卢子兴. 三维编制复合材料热物理性能的有限元分析[J]. 航空学报, 2011, 32(6):1040-1049.

    XIA Biao, LU Zixing. Finite element analysis on thermo-physical properties of 3D braided composites[J]. Acta Aeronautica et Astronautica Sinica,2011,32(6):1040-1049(in Chinese).
    [9]
    张海峰, 葛新石, 叶宏. 预测复合材料导热系数的热阻网络法[J]. 功能材料, 2005, 36(5):757-759. doi: 10.3321/j.issn:1001-9731.2005.05.035

    ZHANG Haifeng, GE Xinshi, YE Hong. Resistance network for predicting the thermal conductivity of composite materials[J]. Journal of Functional Materials,2005,36(5):757-759(in Chinese). doi: 10.3321/j.issn:1001-9731.2005.05.035
    [10]
    谢涛, 何雅玲, 陶文铨. 随机结构多孔介质等效热导率数值计算[J]. 工程热物理学报, 2012, 33(7):1197-1200.

    XIE Tao, HE Yaling, TAO Wenquan. Numerical calculation of effective thermal conductivity for complex multiphase materials[J]. Journal of Engineering Thermophysics,2012,33(7):1197-1200(in Chinese).
    [11]
    MARTINEZ-GARCIA J, BRAGINSKY L, SHKLOVER V. Correlation function analysis of fiber networks: Implications for thermal conductivity[J]. Physical Review B,2011,84(5):1787-1794.
    [12]
    WANG M, WANG J K, PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E,2007(3):036702.
    [13]
    赵雅薇. 片状和纤维状碳材料填充的导热复合材料的制备与研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    ZHAO Yawei. Preparation and research of thermal conductivity composites filled with flaky and fibrous carbon materials[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [14]
    张弛, 阚安康, 孟闯. 介观尺度下纤维导热预测与试验研究[J]. 南京航空航天大学学报, 2017, 49(4):574-579.

    ZHANG Chi, KAN Ankang, MENG Chuang, et al. Experimental study and thermal conductivity prediciton of fiber in mesoscale condition[J]. Journal of Nanjing University of Aeronautics & Astronautics,2017,49(4):574-579(in Chinese).
    [15]
    徐建华. 纤维质隔热材料导热系数的计算方法[J]. 江苏陶瓷, 1991, 53(2):11-14.

    XU Jiahua. The computational method on thermal conductivity of fiberous heat insulating materials[J]. Jiangsu Ceramic,1991,53(2):11-14(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (1250) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return