Volume 38 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
LIU Xu, WU Junwei, HE Yong, et al. Laser ultrasonic testing technology for carbon fiber reinforced resin braided composites based on air-coupled transducer[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2829-2838. doi: 10.13801/j.cnki.fhclxb.20201210.003
Citation: LIU Xu, WU Junwei, HE Yong, et al. Laser ultrasonic testing technology for carbon fiber reinforced resin braided composites based on air-coupled transducer[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2829-2838. doi: 10.13801/j.cnki.fhclxb.20201210.003

Laser ultrasonic testing technology for carbon fiber reinforced resin braided composites based on air-coupled transducer

doi: 10.13801/j.cnki.fhclxb.20201210.003
  • Received Date: 2020-09-21
  • Accepted Date: 2020-12-01
  • Rev Recd Date: 2020-11-16
  • Available Online: 2020-12-11
  • Publish Date: 2021-09-01
  • Due to its non-contact, no coupling agent, fast and high resolution nature, laser ultrasonic technology has great potential in the detection of defects of anisotropic carbon fiber braided composites. In this paper, the finite element method was used to analyze the effect of the excitation position and braided structure on the ultrasonic signal excited by the laser point source, also the propagation law and energy distribution characteristics of the elastic wave inside the material were obtained. A non-contact laser ultrasonic C-scan imaging system was built based on a 1 MHz air-coupled transducer, and the experiments of near-surface micro structure and internal defect detection in plain and satin carbon fiber braided composites were carried out. The experimental results have shown that the spatial distribution characteristics of the near-surface resin capsule, carbon fiber bundle shape, orientation, size and internal defects and so on in the carbon fiber braided composites can be observed with high resolution by employing the laser air-coupled ultrasonic imaging technique. It provides an effective method of the micro structure characterization and defect detection for the aerospace composites.

     

  • loading
  • [1]
    马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7):1787-1803.

    MA B Q, ZHOU Z G. Progress and development trend of non-contact non-destructive testing technology for aerospace composite structures[J]. Acta Aeronauticale Sinica,2014,35(7):1787-1803(in Chinese).
    [2]
    陈祥宝. 先进树脂基复合材料的发展和应用[J]. 航空材料学报, 2003, 023(z1):198-204.

    CHEN X B. Development and application of advanced polymer matrix composites[J]. Journal of Aeronautical Materials,2003,023(z1):198-204(in Chinese).
    [3]
    陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 0239(3):605-610.

    CHEN S J. Composite material technology and large aircraft[J]. Journal of Aeronautical,2008,0239(3):605-610(in Chinese).
    [4]
    SUN G, ZHOU Z. Non-contact detection of delamination in layered anisotropic composite materials with ultrasonic waves generated and detected by lasers[J]. Optik International Journal for Light & Electron Optics,2016,127(16):6424-6433.
    [5]
    WANG L, WU J, CHEN C, et al. Progressive failure analysis of 2D woven composites at the meso-micro scale[J]. Composite Structures,2017,178:395-405.
    [6]
    KIER Z T, SALVI A, THEIS G, et al. Estimating mechanical properties of 2D triaxially braided textile composites based on microstructure properties[J]. Composites,2015,68b:288-299.
    [7]
    张爽, 吴晓青, 程勇. 二维编织理论研究进展[J]. 玻璃钢/复合材料, 2017(8): 53+103-110.

    ZHANG S, WU X Q, CHENG Y. Research progress of two-dimensional weaving theory[J]. Fiber Glass Reinforced Plastics/Composite, 2017(8): 53+103-110(in Chinese).
    [8]
    章亚东, 段跃新, 左璐, 等. 经编织物法制备连续纤维增强热塑性复合材料的微观形貌和浸润过程分析[J]. 复合材料学报, 2004, 21(6):63-69. doi: 10.3321/j.issn:1000-3851.2004.06.011

    ZHANG Y D, DUAN Y X, ZUO L, et al. Analyses of microstructure and impregnation process of FRTP composites manufactured from warp-knitting fabric[J]. Acta Materiae Compositae Sinica,2004,21(6):63-69(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.06.011
    [9]
    张超, 许希武, 郭树祥. 二维二轴1×1编织复合材料细观结构模型及力学性能有限元分析[J]. 复合材料学报, 2011(6):221-228.

    ZHANG C, XU X W, GUO S X. Mesoscopic structural model and finite element analysis of mechanical properties of two-dimensional two-axis 1×1 braided composites[J]. Journal of Composites,2011(6):221-228(in Chinese).
    [10]
    钟智丽, 王子帅. 二维碳纤维编织增强复合材料管件耐冲击性能研究[J]. 纺织科学与工程学报, 2019, 036(3):32-35.

    ZHONG Z L, WANG Z S. Research on impact resistance of two-dimensional braided carbon fiber reinforced composite pipe fittings[J]. Journal of Textile Science and Engineering,2019,036(3):32-35(in Chinese).
    [11]
    刘松平,郭恩明,张谦琳. 复合材料深度方向超声C扫描检测技术[J]. 无损检测, 2001(1):13-15.

    LIU S P, GUO E M, ZHANG Q L, et al. Ultrasonic C-scan inspection technology of composite materials in depth direction[J]. Nondestructive Testing,2001(1):13-15(in Chinese).
    [12]
    李圣贤, 朱永凯, 王海涛, 等. 复合材料分层缺陷的激光超声检测[J]. 无损检测, 2019, 41(5):1-5. doi: 10.11973/wsjc201905001

    LI S X, ZHU Y K, WANG H T, et al. Laser ultrasonic testing of delamination in composite material[J]. Nondestructive Testing,2019,41(5):1-5(in Chinese). doi: 10.11973/wsjc201905001
    [13]
    王小永, 钱华. 先进复合材料中的主要缺陷与无损检测技术评价[J]. 无损探伤, 2006, 30(4):1-7.

    WANG X Y, QIAN H. Main defects in advanced composite materials and evaluation of nondestructive testing technology[J]. Nondestructive Testing,2006,30(4):1-7(in Chinese).
    [14]
    ANGELIDIS N, IRVING P E. Detection of impact damage in CFRP laminates by means of electrical potential techniques[J]. Composites Science and Technology,2007,67(3/4):594-604.
    [15]
    LIANG T, REN W, TIAN G Y, et al. Low energy impact damage detection in CFRP using eddy current pulsed thermography[J]. Composite Structures,2016,143:352-361.
    [16]
    LI C, PAIN D, WILCOX P D, et al. Imaging composite material using ultrasonic arrays[J]. NDT & E international,2013,53:8-17.
    [17]
    XU W, CAO M, LI X, et al. Delamination monitoring in CFRP laminated plates in noisy conditions using complex-wavelet 2D curvature mode shapes[J]. Smart Materials & Structures,2017,26(10):104008.
    [18]
    吕宏诗, 刘彬. 激光多普勒测振技术的最新 进展[J]. 激光技术, 2005, 29(2):176-179. doi: 10.3969/j.issn.1001-3806.2005.02.002

    LU H S, LIU B. The latest development of laser Doppler vibration measurement technology[J]. Laser Technology,2005,29(2):176-179(in Chinese). doi: 10.3969/j.issn.1001-3806.2005.02.002
    [19]
    季宏丽, 张超, 裘进浩. 激光超声技术在复合材料检测中的应用[J]. 航空制造技术, 2017(15):16-22.

    JI H L, ZHANG C, QIU J H. Application of laser ultrasonic technology in composite material testing[J]. Aviation Manufacturing Technology,2017(15):16-22(in Chinese).
    [20]
    陈刚, 王开圣, 赵志敏. 基于有限元方法的双层材料激光超声数值模拟[J]. 理化检验(物理分册), 2011(7):9-12.

    CHEN G, WANG K S, ZHAO Z M. Numerical simulation of Laser ultrasound of two-layer material based on finite element method[J]. Physical and Chemical Inspection (Physical Volume),2011(7):9-12(in Chinese).
    [21]
    SHI Y J, WOOH S C, OWART M. Laser-ultrasonic generation of Lamb waves in the reaction force range[J]. Ultrasonics,2003,41(8):623-633.
    [22]
    BALAKHNINA I A, BRANDT N N, CHIKISHEV A Y, et al. Optoacoustic measurements of the porosity of paper samples with foxings[J]. Applied Physics Letters,2012,101(17):16.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1266) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return