Volume 38 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
FAN Yuanrui, ZHANG Wei, CHEN Yuantao, et al. ZIF-8-SiO2 and adsorption on U(VI)[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3064-3072. doi: 10.13801/j.cnki.fhclxb.20201207.001
Citation: FAN Yuanrui, ZHANG Wei, CHEN Yuantao, et al. ZIF-8-SiO2 and adsorption on U(VI)[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3064-3072. doi: 10.13801/j.cnki.fhclxb.20201207.001

ZIF-8-SiO2 and adsorption on U(VI)

doi: 10.13801/j.cnki.fhclxb.20201207.001
  • Received Date: 2020-09-17
  • Accepted Date: 2020-11-30
  • Available Online: 2020-12-08
  • Publish Date: 2021-09-01
  • Zeolite imidazole ester framework structure material ZIF-8 and TEOS were used to prepare ZIF-8-SiO2 composite, the structure of ZIF-8-SiO2 and the morphology before and after adsorption of U(VI) were characterized by XRD, SEM, EDS. And the results show that ZIF-8-SiO2 is successfully prepared and has a good adsorption effect on U(VI). The effects of pH value, time, temperature, initial uranium concentration and salt concentration on the adsorption performance of ZIF-8-SiO2 were investigated by static adsorption experiments. According to the experimental results, when the initial concentration is 80 mg·g−1, the maximum actual adsorption capacity of ZIF-8-SiO2 on U(VI) at 25℃ is 498 mg·g−1, and according to the analysis of Langmuir model fitting results, the theoretical adsorption capacity of the material on U(VI) is up to 678.5 mg·g−1. And in the range of 200~500 MPa, the higher the pressure, the better the adsorption. FTIR and XPS were used to characterize the structure of the material before and after uranylion adsorption, to explore the possible adsorption mechanism during the adsorption process.

     

  • loading
  • [1]
    LINDNER H, SCHNEIDER E. Review of cost estimates for uranium recovery from seawater[J]. Energy Economics,2015,49:9-22. doi: 10.1016/j.eneco.2015.01.016
    [2]
    王国华, 杨思芹, 周耀辉, 等. 生物还原法修复铀污染地下水的研究进展[J]. 环境科学与技术, 2019, 42(8):47-53.

    WANG G H, YANG S Q, ZHOU Y H, et al. Research progress on the bioremediation of groundwater polluted by uranium via bio-reduction[J]. Environmental Science & Technology,2019,42(8):47-53(in Chinese).
    [3]
    敖浚轩, 徐晓, 李玉娜, 等. 海水提铀研究进展[J]. 辐射研究与辐射工艺学报, 2019, 37(2):3-28.

    AO J X, XU X, LI Y N, et al. Research progress in uranium extraction from seawater[J]. Journal of Radiation Research and Radiation Processing,2019,37(2):3-28(in Chinese).
    [4]
    WOJCIECHOWSKI A. The U-232 in thorium cycle[J]. Progress in Nuclear Energy,2018,106:204-214. doi: 10.1016/j.pnucene.2018.03.011
    [5]
    王双, 冉永红, 李娟, 等. 铀的生殖毒性效应及作用机制研究进展[J]. 局解手术学杂志, 2019, 28(1):86-90.

    WANG S, RAN Y H, LI J, et al. Advances in reproductive toxicity of uranium and its mechanism[J]. Journal of Regional Anatomy and Operative Surgery,2019,28(1):86-90(in Chinese).
    [6]
    CAO H, CHEN J, ZHANG J, et al. Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China[J]. Journal of Environmental Sciences-china,2010,22(11):1792-1799. doi: 10.1016/S1001-0742(09)60321-1
    [7]
    HARIBALA, HU B, WANG C, et al. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China[J]. Ecotoxicology and Environmental Safety,2016,130:185-192. doi: 10.1016/j.ecoenv.2016.04.002
    [8]
    魏广芝, 徐乐昌. 低浓度含铀废水的处理技术及其研究进展[J]. 铀矿冶, 2007, 26(2):90-95. doi: 10.3969/j.issn.1000-8063.2007.02.007

    WEI G Z, XU L C. Treatment technology of low concentration uranium-bearing wastewater and its research progress[J]. Uranium Mining and Metallurgy,2007,26(2):90-95(in Chinese). doi: 10.3969/j.issn.1000-8063.2007.02.007
    [9]
    FENG M L, SARMA D, QI X H, et al. Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate[J]. Journal of the American Chemical Society,2016,138(38):12578-12585. doi: 10.1021/jacs.6b07351
    [10]
    WANG Y S, CHEN Y T, LIU C, et al. Preparation of porous magnesium oxide foam and study on its enrichment of uranium[J]. Journal of Nuclear Materials,2018,504:166-175. doi: 10.1016/j.jnucmat.2018.03.041
    [11]
    宋莉芳, 夏慧芸, 陈华鑫, 等. 中孔金属有机骨架材料的制备与应用[J]. 化学进展, 2014, 26(7):1131-1142.

    SONG L F, XIA H Y, CHEN H X, et al. Preparation and application of mesoporous metal-organic frameworks[J]. Progress in chemistry,2014,26(7):1131-1142(in Chinese).
    [12]
    WANG C, LIU X, KESER DEMIR N, et al. Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews,2016,45(18):5107-5134. doi: 10.1039/C6CS00362A
    [13]
    WU Y H, PANG H W, YAO W, et al. Synthesis of rod-like metal-organic framework (MOF-5) nanomaterial for efficient removal of U(VI): batch experiments and spectroscopy study[J]. Science Bulletin,2018,63(13):831-839. doi: 10.1016/j.scib.2018.05.021
    [14]
    ZHANG Y, CHEN R, LIU Q, et al. Polypyrrole modified FeO-loaded graphene oxide for enrichment of uranium(VI) from simulated seawater[J]. Dalton Transactions,2018,47:12984-12992. doi: 10.1039/C8DT02819B
    [15]
    LIU F T, SONG S S, CHENG G, et al. MIL-101(Cr) metal-organic framework functionalized with tetraethylenepentamine for potential removal of Uranium (VI) from waste water[J]. Adsorption Science and Technology,2018,36(7-8):1550-1567. doi: 10.1177/0263617418789516
    [16]
    张晋维, 李平, 张馨凝, 等. 水稳定性金属有机框架材料的水吸附性质与应用[J]. 化学学报, 2020, 78(7):597-612. doi: 10.6023/A20050153

    ZHANG J W, LI P, ZHANG X N, et al. Water adsorption properties and applications of stable metal-organic frameworks[J]. Acta chimca sinica,2020,78(7):597-612(in Chinese). doi: 10.6023/A20050153
    [17]
    张蕾蕾, 唐安琪, 王章慧, 等. 以ZIF-8为模板制备聚多巴胺/聚乙二醇复合纳米胶囊[J]. 功能高分子学报, 2018, 31(6):546-552.

    ZHANG L L, TANG A Q, WANG Z H, et al. Preparation of polydopamine/poly (ethylene glycol) composite nanocapsules with ZIF-8 nanoparticles as templates[J]. Journal of Functional Polymers,2018,31(6):546-552(in Chinese).
    [18]
    XU X, WANG X, LIU M, et al. ZIF/SiO2 core-shell microsphere extraction coupled with LC–MS/MS for the quantita-tive analysis of four plant growth regulators in navel oranges[J]. Journal of Separation Science,2018,41(18). doi: 10.1002/jssc.201800286
    [19]
    HAMEED B H, TAN I A W, AHMAD A L. Adsorption isotherm, kinetic modeling and mechanism of 2, 4, 6-trichlorophenol on coconut husk-based activated carbon[J]. Chemical Engineering Journal,2008,144(2):235-244. doi: 10.1016/j.cej.2008.01.028
    [20]
    WU C, LIU Q, CHEN R, et al. Fabrication of ZIF-8@SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance[J]. ACS Appllied Mater Interfaces,2017,9(12):11106-11115. doi: 10.1021/acsami.6b16848
    [21]
    王彦惠, 成建峰, 赵玉婷, 等. Fe3O4/SiO2-NH2磁性复合纳米材料对铀(VI)的吸附性能[J]. 环境化学, 2019, 38(9):2149-2158. doi: 10.7524/j.issn.0254-6108.2019011003

    WANG Y H, CHENG J F, ZHAO Y T, et al. Adsorption of Fe3O4@SiO2-NH2 magnetic composite nanomaterials on Uranium (VI)[J]. Environmental Chemistry,2019,38(9):2149-2158(in Chinese). doi: 10.7524/j.issn.0254-6108.2019011003
    [22]
    LIU R, ZHANG W, CHEN Y T, et al. Uranium (VI) adsorption by copper and copper/iron bimetallic central MOFs[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,587:124334. doi: 10.1016/j.colsurfa.2019.124334
    [23]
    许成, 张炜, 陈元涛, 等. UiO-66/UiO-66-PYDC的制备及其对UO22+吸附性研究[J]. 环境科学学报, 2018, 38(11):4350-4359.

    XU C, ZHANG W, CHEN Y T, et al. Preparation of UiO-66/UiO-66-PYDC and their absorptive properties on uranyl ions[J]. Acta Scientiae Circumstantiae,2018,38(11):4350-4359(in Chinese).
    [24]
    王芳, 张辉, 戴仲然, 等. 磁性核壳CoFe2O4@SiO2@PIL-AO复合材料的制备及其吸附U(VI)性能研究[J]. 环境科学学报, 2018, 38(9):3605-3613.

    WANG F, ZHANG H, DAI Z R, et al. Preparation of magnetic yolk/shell CoFe2O4@SiO2@PIL-AO composite material and its adsorption behavior for U(VI)[J]. Acta Scientiae Circumstantiae,2018,38(9):3605-3613(in Chinese).
    [25]
    林晨曦, 冯洋, 李晴, 等. 动力学、热力学和活化能在花生壳吸附铅离子实验中的应用[J]. 化学教育, 2020, 41(8):53-57.

    LIN C X, FENG Y, LI Q, et al. Application of kinetics, therodynamics and activation energy in adsorption of Pb2+ by peanut shell[J]. Chinese Journal of Chemical Education,2020,41(8):53-57(in Chinese).
    [26]
    宋艳晖, 钱春园, 张托弟, 等. 三维凹凸棒石-氧化石墨烯的制备及其吸附性能[J]. 非金属矿, 2020, 43(2):9-12. doi: 10.3969/j.issn.1000-8098.2020.02.003

    SONG Y H, QIAN C Y, ZHANG T D, et al. Preparation and adsorption properties of 3D attapulgite-graphene oxide[J]. Non-Metallic Mines,2020,43(2):9-12(in Chinese). doi: 10.3969/j.issn.1000-8098.2020.02.003
    [27]
    KUMAR K S, DAHMS H, WON E, et al. Microalgae-A promising tool for heavy metal remediation[J]. Ecotoxicology and Environmental Safety,2015:329-352.
    [28]
    ZHU L, SUN Y L, SONG L J, et al. Dihydroxy bezladely derivatives functionalized mesoporous silica SBA-15 for the sorption of U(VI)[J]. Journal of Radioanalytical and Nuclear Chemistry,2016,310:125-137. doi: 10.1007/s10967-016-4779-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (1456) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return