Volume 38 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
BAI Jiawen, WEI Yang, ZHANG Yirui, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3084-3093. doi: 10.13801/j.cnki.fhclxb.20201117.001
Citation: BAI Jiawen, WEI Yang, ZHANG Yirui, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3084-3093. doi: 10.13801/j.cnki.fhclxb.20201117.001

Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns

doi: 10.13801/j.cnki.fhclxb.20201117.001
  • Received Date: 2020-09-21
  • Accepted Date: 2020-10-31
  • Available Online: 2020-11-17
  • Publish Date: 2021-09-01
  • In order to study the feasibility of applying the original seawater and sea sand concrete directly to the concrete filled composite tube, a new structure of seawater and sea sand concrete filled carbon fiber reinforced polymer (CFRP) -steel composite tube composed of internal and external fiber reinforced polymer (FRP) and sandwich steel tube was proposed. Twelve new seawater and sea sand concrete filled circular CFRP-steel composite tube columns were tested under axial compression, and the influence of the number of CFRP layers and the strength grade of core concrete on the axial compression performance was studied. The test results show that the wrapping of inner and outer CFRP can effectively improve the bearing capacity and deformation capacity of the structure. The failure mode of common strength seawater and sea sand concrete filled circular CFRP-steel composite tube columns is concrete crushing, while that of high strength seawater and sea sand concrete filled circular CFRP-steel composite tube columns is shear failure. The ultimate stress of the structure is positively correlated with the number of CFRP layers and the strength of concrete. However, the ultimate strain only increases with the number of CFRP layers, but decreases with the strength of concrete. The contribution of core concrete and steel tube to the ultimate stress almost does not change with the increase of the number of layers of CFRP, and the contribution of CFRP to the ultimate stress of specimens is dominant when two or more layers of CFRP are wrapped.

     

  • loading
  • [1]
    ZHANG Q T, XIAO J Z, ZHANG P, et al. Mechanical behaviour of seawater sea-sand recycled coarse aggregate concrete columns under axial compressive loading[J]. Construction and Building Materials,2019,229:117050. doi: 10.1016/j.conbuildmat.2019.117050
    [2]
    TENG J G, XIANG Y, YU T, et al. Development and mechanical behaviour of ultra-high-performance seawater sea-sand concrete[J]. Advances in Structural Engineering,2019(6):1-21.
    [3]
    QIN R, LAU D, TAM L, et al. Experimental investigation on interfacial defect criticality of frp-confined concrete columns[J]. Sensors,2019,19(3):468.
    [4]
    GHARACHORLOU A, RAMEZANIANPOUR A A. Durability of concrete cylinder specimens strengthened with FRP laminates under penetration of chloride ions[J]. International Journal of Civil Engineering,2010,8(4):327-336.
    [5]
    MOHAMMEDAMEEN A, EVIK A, ALZEEBAREE R, et al. Performance of FRP confined and unconfined engineered cementitious composite exposed to seawater[J]. Journal of Composite Materials,2019,53(28-30):4285-4304.
    [6]
    GUO F, AL-SAADI S, SINGH RAMAN R K, et al. Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment[J]. Corrosion Science,2018,141:1-13. doi: 10.1016/j.corsci.2018.06.022
    [7]
    DONG Z Q, WU G, ZHAO Xi L, et al. Mechanical properties of discrete BFRP needles reinforced seawater sea-sand concrete-filled GFRP tubular stub columns[J]. Construction and Building Materials,2020,244:118330.
    [8]
    WANG J, FENG P, HAO T Y, et al. Axial compressive behavior of seawater coral aggregate concrete-filled FRP tubes[J]. Construction and Building Materials,2017,147:272-285. doi: 10.1016/j.conbuildmat.2017.04.169
    [9]
    ZHANG T, NIU D T, RONG C. GFRP-confined coral aggregate concrete cylinders: The experimental and theoretical analysis[J]. Construction and Building Materials,2019,218:206-213. doi: 10.1016/j.conbuildmat.2019.05.052
    [10]
    ZHOU A, QIN R Y, CHOW C L, et al. Structural performance of FRP confined seawater concrete columns under chloride environment[J]. Composite Structures,2019,216:12-19. doi: 10.1016/j.compstruct.2019.02.058
    [11]
    ZENG J J, GAO W Y, DUAN Z J, et al. Axial compressive behavior of polyethylene terephthalate/carbon FRP-confined seawater sea-sand concrete in circular columns[J]. Construction and Building Materials,2020,234:117383. doi: 10.1016/j.conbuildmat.2019.117383
    [12]
    JIANG T, TENG J G. Analysis-oriented stress-strain models for FRP-confined concrete[J]. Engineering Structures,2007,29(11):2968-2986. doi: 10.1016/j.engstruct.2007.01.010
    [13]
    LI Y L, ZHAO X L, RAMAN SINGH R K, et al. Tests on seawater and sea sand concrete-filled CFRP, BFRP and stainless steel tubular stub columns[J]. Thin-Walled Structures,2016,108:163-184. doi: 10.1016/j.tws.2016.08.016
    [14]
    LI Y L, ZHAO X L, SINGH R K R, et al. Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns[J]. Thin-Walled Structures,2016,106:390-406. doi: 10.1016/j.tws.2016.05.014
    [15]
    WEI Y, WU G, LI G F. Performance of circular concrete-filled fiber-reinforced polymer-steel composite tube columns under axial compression[J]. Journal of Reinforced Plastics & Composites,2014,33(20):1911-1928.
    [16]
    WEI Y, ZHANG Y R, CHAI J L, et al. Experimental investigation of rectangular concrete-filled fiber reinforced polymer (FRP)-steel composite tube columns for various corner radii[J]. Composite Structures,2020,244:112311. doi: 10.1016/j.compstruct.2020.112311
    [17]
    ZHANG Y R, WEI Y, BAI J W, et al. Stress-strain model of an FRP-confined concrete filled steel tube under axial compression[J]. Thin-Walled Structures,2019,142:149-159. doi: 10.1016/j.tws.2019.05.009
    [18]
    DING F X, LU D R, BAI Y, et al. Behaviour of CFRP-confined concrete-filled circular steel tube stub columns under axial loading[J]. Thin-Walled Structures,2018,125:107-118. doi: 10.1016/j.tws.2018.01.015
    [19]
    HU H S, XU L, GUO Z X, et al. Behavior of eccentrically loaded square spiral-confined high-strength concrete-filled steel tube columns[J]. Engineering Structures,2020,216:110743. doi: 10.1016/j.engstruct.2020.110743
    [20]
    张依睿, 魏洋, 柏佳文, 等. 纤维增强聚合物复合材料-钢复合圆管约束混凝土轴压性能预测模型[J]. 复合材料学报, 2019, 36(10):2478-2485.

    ZHANG Y R, WEI Y, BAI J W, et al. Models for predicting axial compression behavior of fiber reinforced polymer-steel composite circular tube confined concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2478-2485(in Chinese).
    [21]
    中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of China. Test method for tensile properties of directional fiber reinforced polymer matrix composites: GB/T 3354—2014[S]. Beijing: Standards Press of China, 2014(in Chinese).
    [22]
    中国国家标准化管理委员会. 金属材料拉伸试验: 第一部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of China. Tensile test of metallic materials: Part 1: Test method at room tempera-ture: GB/T 228.1—2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [23]
    张素梅, 刘界鹏, 马乐, 等. 圆钢管约束高强混凝土轴压短柱的试验研究与承载力分析[J]. 土木工程学报, 2007, 40(3):24-31. doi: 10.3321/j.issn:1000-131X.2007.03.005

    ZHANG S M, LIU J P, MA L, et al. Axial compression test and analysis of circular tube confined HSC stub columns[J]. China Civil Engineering Journal,2007,40(3):24-31(in Chinese). doi: 10.3321/j.issn:1000-131X.2007.03.005
    [24]
    郭莹, 许天祥, 刘界鹏. 圆CFRP-钢复合管约束高强混凝土短柱轴压试验研究[J]. 建筑结构学报, 2019, 40(5):124-131.

    GUO Y, XU T X, LIU J P. Experimental study on axial behavior of circular CFRP-steel composite tubed high-strength concrete stub columns[J]. Journal of Building Structures,2019,40(5):124-131(in Chinese).
    [25]
    TANG H Y, CHEN J L, FAN L Y, et al. Experimental investigation of FRP-confined concrete-filled stainless steel tube stub columns under axial compression[J]. Thin-Walled Structures, 2020, 146(10): 106483.
    [26]
    DONG C X, KWAN A K H, HO J C M. Effects of external confinement on structural performance of concrete-filled steel tubes[J]. Journal of Constructional Steel Research,2017,132:72-82. doi: 10.1016/j.jcsr.2016.12.024
    [27]
    LU Y Y, LI N, LI S. Behavior of FRP-confined concrete-filled steel tube columns[J]. Polymers,2014,6(5):1333-1349. doi: 10.3390/polym6051333
    [28]
    TAO Z, HAN L H, ZHUANG J P. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns[J]. Advances in Structural Engineering,2007,10(1):37-46. doi: 10.1260/136943307780150814
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (1235) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return