Volume 38 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
WANG Zhongyuan, CAI Changchun, WANG Zhenjun, et al. Mechanical behavior and failure mechanism of the 3D angle interlocking woven reinforced aluminum matrix composites under in-plane tensile loading[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2997-3007. doi: 10.13801/j.cnki.fhclxb.20201116.007
Citation: WANG Zhongyuan, CAI Changchun, WANG Zhenjun, et al. Mechanical behavior and failure mechanism of the 3D angle interlocking woven reinforced aluminum matrix composites under in-plane tensile loading[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2997-3007. doi: 10.13801/j.cnki.fhclxb.20201116.007

Mechanical behavior and failure mechanism of the 3D angle interlocking woven reinforced aluminum matrix composites under in-plane tensile loading

doi: 10.13801/j.cnki.fhclxb.20201116.007
  • Received Date: 2020-09-17
  • Accepted Date: 2020-10-30
  • Available Online: 2020-11-17
  • Publish Date: 2021-09-01
  • 3D angle interlocking fabric reinforced aluminum composites were prepared by the vacuum assisted pressure infiltration method. The mechanical properties and damage behavior of the composites subjected to in-plane tensile loading were investigated using the micromechanical finite element simulation and experimental method. The results show that the tensile stress-strain curve from simulation is in agreement with the testing curves, where the calculation errors of the initial modulus, ultimate strength and fracture strain in warp (weft) direction are 3.96%(1.11%), 1.40%(6.86%) and −5.49%(3.73%), respectively. Under the warp directional tension condition, the interface on warp yarns and the adjoint matrix alloy damage successively. With the increase of tensile strain, these damage zones accumulate and interact with each other, leading to the failure of interface, matrix and weft yarns in sequence. The fracture of warp yarns in the terminate stage induces the ultimate failure of the composites. During the weft directional tensile process, the interface on warp yarns and the thin matrix alloy between yarns damage and fail firstly. The transverse fracture of warp yarns occurs in the middle stage of tensile deformation. The axial fracture of weft yarns, which sustain the loading stress at the end of deformation process, is the main failure mechanism of the composites under weft directional tensile condition. The tensile modulus and strength in weft direction are 81.8% and 56.5% times than those in warp direction, owing to the lower volume fraction of weft yarns in the 3D angle interlocking fabric.

     

  • loading
  • [1]
    RAWAL S P. Metal-matrix composites for space applications[J]. The Journal of the Minerals, Metals & Materials Society,2001,53(4):14-17.
    [2]
    LI D, CHEN G, JIANG L, et al. Effect of thermal cycling on the mechanical properties of CF/Al composites[J]. Materials Science and Engineering A,2013,586(1):330-337.
    [3]
    LEE M, CHOI Y, SUGIO K, et al. Effect of aluminum carbide on thermal conductivity of the unidirectional CF/Al composites fabricated by low pressure infiltration process[J]. Composite Science and Technology,2014,97(16):1-5.
    [4]
    ZHOU Y, WANG W, XIA Y, et al. An experimental study on the tensile behavior of a unidirectional carbon fiber reinforced aluminum composite at different strain rates[J]. Materials Science and Engineering A,2003,362(1-2):112-117. doi: 10.1016/S0921-5093(03)00214-4
    [5]
    JAQUESSON M, GIRARD A, VIALSETIF M H, et al. Tensile and fatigue behavior of Al-based metal matrix composites reinforced with continuous carbon or alumina fibers: Part I. quasi-unidirectional composites[J]. Metallurgical and Materials Transactions A,2004,35:3289-3305. doi: 10.1007/s11661-004-0071-2
    [6]
    WANG X, JIANG D, WU G, et al. Effect of Mg content on the mechanical properties and microstructure of Grf/Al composite[J]. Materials Science and Engineering A,2008,497(1-2):31-36. doi: 10.1016/j.msea.2008.07.022
    [7]
    EVERETT R K. Metal matrix composites: Processing and Interfaces[M]. Pittsburgh: Academic Press, 1991.
    [8]
    DYZIA M, GROSZ A D, SLEZIONA J, HUFENBACH W, et al. Infiltration test of carbon fibres textile by modiefied AlSi9Cu(Fe) alloy[J]. Composites,2009,9(3):201-213.
    [9]
    ZHANG Y, YAN L, MIAO M, et al. Microstructure and mechanical properties of z-pinned carbon fiber reinforced aluminum alloy composites[J]. Material and Design,2015,86(5):872-877.
    [10]
    ALHASHMY H A, NGANBE M. Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites[J]. Material and Design,2015,67:154-158. doi: 10.1016/j.matdes.2014.11.034
    [11]
    周珍珍, 徐志锋, 余欢, 等. 编织结构对3D-Cf/Al 复合材料显微组织与力学性能的影响[J]. 中国有色金属学报, 2016, 26(4):773-781.

    ZHOU Zhenzhen, XU Zhifeng, YU Huan, et al. Effects of braiding structures on microstructure and mechanical properties of 3D-Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals,2016,26(4):773-781(in Chinese).
    [12]
    胡银生, 余欢, 王振军, 等. 织物结构对2.5D-Cf/Al复合材料微观组织与力学性能的影响[J]. 中国有色金属学报, 2018, 28(12):2512-2522.

    HU Yinsheng, YU Huan, WANG Zhenjun, et al. Effect of woven fabric structure on microstructure and mechanical properties of 2.5D-Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals,2018,28(12):2512-2522(in Chinese).
    [13]
    ZHANG Y, WU G, CHEN G, et al. Microstructure and mechanical properties of 2D woven Grf/Al composites[J]. Transactions of Nonferrous Metals Society of China,2006,16:1509-1512.
    [14]
    MA YQ, QI L H, ZHENG W Q, et al. Effect of specific pressure on fabrication of 2D-Cf/Al composite by vacuum and pressure infiltration[J]. Transactions of Nonferrous Metals Society of China,2013,23:1915-1921. doi: 10.1016/S1003-6326(13)62677-1
    [15]
    周计明, 郑武强, 齐乐华, 等. 真空吸渗挤压二维正交铺层复合材料压缩失效机制[J]. 上海大学学报, 2014, 20(1):75-82.

    ZHOU Jiming, ZHENG Wuqiang, QI Lehua, et al. Investigation on compressive failure mechanism of 2D cross-ply Cf/Al composites by extrusion directly following vacuum pressure infiltration process[J]. Journal of Shanghai University,2014,20(1):75-82(in Chinese).
    [16]
    HUFENBACH W, GUDE M, CZULAK A. Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods[J]. Journal of Achievements in Materials and Manufacturing Engineering,2009,2(35):177-183.
    [17]
    YANG Q R, LIU J X, LI S K, et al. Fabrication and mechanical properties of Cu-coated woven carbon fibers reinforced aluminum alloy composite[J]. Materials & Design,2014,57:442-448.
    [18]
    YANG Q R, LIU J X, LI S K, et al. Bending mechanical property and failure mechanisms of woven carbon fiber-reinforced aluminum alloy composite[J]. Rare Metals,2016,35(12):915-919. doi: 10.1007/s12598-014-0271-x
    [19]
    ZHANG J, LIU S, ZHANG Y, et al. Fabrication of woven carbon fibers reinforced Al-Mg (95-5wt%) matrix composites by an electromagnetic casting process[J]. Journal of Materials Processing Technology,2015,226:78-84. doi: 10.1016/j.jmatprotec.2015.06.040
    [20]
    ZHANG J, LIU S, LU Y, et al. Semisolid-rolling and annealing process of woven carbon fiber reinforced Al-matrix composites[J]. Journal of Materials Processing Technology,2017,33:623-629.
    [21]
    LEE S K, BYUN J H, HONG S H. Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites[J]. Materials Science and Engineering A,2003,347:346-358. doi: 10.1016/S0921-5093(02)00614-7
    [22]
    MCWILLIAMS B, DIBELKA J, YEN C. Multiscale modeling and characterization of inelastic deformation mechanisms in continuous fiber and 2D woven fabric reinforced metal matrix composites[J]. Materials Science and Engineering A,2014,618:142-152. doi: 10.1016/j.msea.2014.08.063
    [23]
    SHIRVANIMOGHADDAM K, HAMIM S U, AKBARI M, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties[J]. Composites: Part A,2017,92:70-96. doi: 10.1016/j.compositesa.2016.10.032
    [24]
    王振军, 董敬涛, WANG Gui, 等. 2.5维织物Cf/Al复合材料制备及其经纬向拉伸变形力学行为研究[J]. 稀有金属材料与工程, 2017, 46(12):3744-3752.

    WANG Zhenjun, DONG Jingtao, WANG Gui, et al. Research on the preparation of 2.5D woven fabric Cf/Al composite and its tensile deformation behavior in warp/weft direction[J]. Rare Metal Materials and Engineering,2017,46(12):3744-3752(in Chinese).
    [25]
    ASTM. Standard Test Method for Tensile Properties of Fiber Reinforced Metal Matrix Composites: ASTM D3552-96[S]. West Conshohocken: ASTM International, 2007.
    [26]
    聂明明, 徐志锋, 余欢, 等. 基体合金对连续M40石墨纤维/Al复合材料纤维损伤及断裂机制的影响[J]. 复合材料学报, 2016, 33(12):2797-2806.

    NIE Mingming, XU Zhifeng, YU Huan, et al. Effect of matrix alloy on fiber damage and fracture mechanism of continuous graphite fiber M40/Al composite[J]. Acta Materiae Compositae Sinica,2016,33(12):2797-2806(in Chinese).
    [27]
    CHAMIS C C. Simplified composite micromechanics equations for strength, fracture toughness, impact resistance and environmental effects, TM-83696[R]. Washington: NASA, 1984.
    [28]
    WANG Y C, HUANG Z M. Analytical micromechanics models for elastoplastic behavior of long fibrous composites: A critical review and comparative study[J]. Materials,2018,11:10.
    [29]
    周金秋, 王振军, 杨思远, 等. 连续石墨纤维增强铝基复合材料准静态拉伸损伤演化与断裂力学行为[J]. 复合材料学报, 2020, 37(4):907-918.

    ZHOU Jinqiu, WANG Zhenjun, YANG Siyuan, et al. Damage evolution and fracture behaviors of continuous CF/Al composites subjected to quasi-static tensile loading[J]. Acta Materiae Compositae Sinica,2020,37(4):907-918(in Chinese).
    [30]
    WANG Z J, WANG Z Y, XIONG B W, et al. Micromechanics analysis on the microscopic damage mechanism and mechanical behavior of graphite fiber-reinforced aluminum composites under transverse tension loading[J]. Journal of Alloys and Compounds,2020,815:152459. doi: 10.1016/j.jallcom.2019.152459
    [31]
    WANG Z J, YANG S Y, DU Z H, et al. Micromechanical modeling of damage evolution and mechanical behaviors of CF/Al composites under transverse and longitudinal Tensile Loadings[J]. Materials,2019,12(19):3133. doi: 10.3390/ma12193133
    [32]
    SONG J, WEN W D, CUI H T. Experimental and numerical investigation of mechanical behaviors of 2.5D woven composites at ambient and un-ambient temperatures[J]. Composite Structures,2018,201:699-720. doi: 10.1016/j.compstruct.2018.06.054
    [33]
    LU Z X, ZHOU Y, YANG Z Y, et al. Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension[J]. Computational Materials Science,2013,79:485-494. doi: 10.1016/j.commatsci.2013.07.003
    [34]
    OKABE T, NISHIKAWA M, TOYOSHIMA H. A periodic unit-cell simulation of fiber arrangement dependence on the transverse tensile failure in unidirectional carbon fiber reinforced composites[J]. International Journal of Solids and Structures,2011,48:2948-2959. doi: 10.1016/j.ijsolstr.2011.06.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (927) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return