Volume 37 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
YANG Rui, CAO Qinghua, MEI Changtong, et al. Research progress of functional composite materials constructed from high porosity three-dimensional structural wood[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1796-1804. doi: 10.13801/j.cnki.fhclxb.20200324.001
Citation: YANG Rui, CAO Qinghua, MEI Changtong, et al. Research progress of functional composite materials constructed from high porosity three-dimensional structural wood[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1796-1804. doi: 10.13801/j.cnki.fhclxb.20200324.001

Research progress of functional composite materials constructed from high porosity three-dimensional structural wood

doi: 10.13801/j.cnki.fhclxb.20200324.001
  • Received Date: 2019-12-11
  • Accepted Date: 2020-03-13
  • Available Online: 2020-03-24
  • Publish Date: 2020-08-15
  • Wood is both ecological friendly and renewable, and is an ecological material consistent with sustainable development. By selectively removing hemicellulose and lignin, wood can be prepared into three-dimensional structural wood with high porosity, which can fully take advantage of its high porosity, orderly arrangement of fibers, large specific surface area and good bio-compatibility, outstanding anisotropy of the wood itself. It has potential development value in the fields of flexible electronic equipment, pollution control, smart windows, biomedicine, lithium batteries and building materials. This paper summarized the formation mechanism and preparation methods of functional high porosity three-dimensional structural materials represented by flexible wood, wood sponge, transparent wood, wood hydrogel, carbonized wood and densified wood. The existing problems are pointed out and the future research and development direction are discussed, hoping to provide new ideas for the research and development of new wood-based functional materials.

     

  • loading
  • [1]
    VAY O, BORST K D, HANSMANN C, et al. Thermal conductivity of wood at angles to the principal anatomical directions[J]. Wood Science and Technology,2015,49(3):577-589. doi: 10.1007/s00226-015-0716-x
    [2]
    CABANE E, KEPLINGER T, MERK V, et al. Renewable and functional wood materials by grafting polymerization within cell walls[J]. Chemsuschem,2014,7(4):1020-1025. doi: 10.1002/cssc.201301107
    [3]
    LI J, LU Y, YANG D J, et al. Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions[J]. Biomacromolecules,2011,12(5):1860-1867. doi: 10.1021/bm200205z
    [4]
    ZHU H L, LUO W, CIESIELSKI P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews,2016,116(16):9305-9374. doi: 10.1021/acs.chemrev.6b00225
    [5]
    王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10):123-133.

    WANG Z, WANG X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae,2014,50(10):123-133(in Chinese).
    [6]
    李安鑫, 吕建雄, 蒋佳荔. 木材细胞壁结构及其流变特性研究进展[J]. 林业科学, 2017, 53(12):136-143. doi: 10.11707/j.1001-7488.20171215

    LI A X, LV J X, JIANG J L. A review of wood cell wall structure and its rheological property[J]. Scientia Silvae Sinicae,2017,53(12):136-143(in Chinese). doi: 10.11707/j.1001-7488.20171215
    [7]
    LIU W, SONG M S, KONG B, et al. Flexible and stretchable energy storage: Recent advances and future perspectives[J]. Advanced Materials,2016,29(1):1603436.
    [8]
    HWANG S W, LEE C H, CHENG H, et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors[J]. Nano Letters,2015,15(5):2801-2808. doi: 10.1021/nl503997m
    [9]
    XU S, ZHANG Y H, JIA L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin[J]. Science,2014,344(6179):70-74. doi: 10.1126/science.1250169
    [10]
    SCHWARTZ G, TEE B C K, MEI J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring[J]. Nature Communications,2013,4(1):1859. doi: 10.1038/ncomms2832
    [11]
    BAO Z N, CHEN X D. Flexible and stretchable devices[J]. Advanced Materials,2016,28(22):4177-4179. doi: 10.1002/adma.201601422
    [12]
    ZHU B W, WANG H, LEOW W R, et al. Silk fibroin for flexible electronic devices[J]. Advanced Materials,2015,28(22):4250-4265.
    [13]
    ZORLUTUNA P, ANNABI N, CAMCI-UNAL G, et al. Microfabricated biomaterials for engineering 3D tissues[J]. Advanced Materials,2012,24(14):1782-1804. doi: 10.1002/adma.201104631
    [14]
    SELVAKUMAR M, PAWAR H S, FRANCIS N K, et al. Excavating the role of aloe vera wrapped mesoporous hydroxyapatite frame ornamentation in newly architectured polyurethane scaffolds for osteogenesis and guided bone regeneration with microbial protection[J]. ACS Applied Materials and Interfaces,2016,8(9):5941-5960. doi: 10.1021/acsami.6b01014
    [15]
    REN L Y, PANDIT V, ELKIN J S, et al. Large-scale and highly efficient synthesis of micro-and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration[J]. Nanoscale,2013,5(6):2337-2345. doi: 10.1039/c3nr33423f
    [16]
    张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5):1024-1032.

    ZHANG M Y, YANG Z H, WU Z J, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compo-sitae Sinica,2020,37(5):1024-1032(in Chinese).
    [17]
    何盛, 徐军, 吴再兴, 等. 毛竹与樟子松木材孔隙结构的比较[J]. 南京林业大学学报(自然科学版), 2017, 41(2):157-162.

    HE S, XU J, WU Z X, et al. Compare of porous structure of moso bamboo and Pinus sylvestris L.lumber[J]. Journal of Nanjing Forestry University (Natural Sciences),2017,41(2):157-162(in Chinese).
    [18]
    SONG J, CHEN C, WANG C J, et al. Superflexible wood[J]. ACS Applied Materials and Interfaces,2017,9(28):23520-23527. doi: 10.1021/acsami.7b06529
    [19]
    JIA C, LI T, CHEN C, et al. Scalable, anisotropic transparent paper directly from wood for light management in solar cells[J]. Nano Energy,2017,36:366-373. doi: 10.1016/j.nanoen.2017.04.059
    [20]
    WANG M, LI R N, CHEN G X, et al. Highly stretchable, transparent, and conductive wood fabricated by in situ photopolymerization with polymerizable deep eutectic solvents[J]. ACS Applied Materials and Interfaces,2019,11(15):14313-14321. doi: 10.1021/acsami.9b00728
    [21]
    FAROOQ M, SIPPONEN M H, SEPPALA A, et al. Eco-friendly flame-retardant cellulose nanofibril aerogels by incorporating sodium bicarbonate[J]. ACS Applied Materials and Interfaces,2018,10(32):27407-27415. doi: 10.1021/acsami.8b04376
    [22]
    MEKONNEN T, MUSSONE P, KHALIL H, et al. Progress in bio-based plastics and plasticizing modifications[J]. Journal of Materials Chemistry A,2013,1(43):13379-13398. doi: 10.1039/c3ta12555f
    [23]
    LI Y Y, ZHU H L, SHEN F, et al. Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose[J]. Advanced Functional Materials,2014,24(46):7366-7372. doi: 10.1002/adfm.201402129
    [24]
    FINK S. Transparent wood-a new approach in the functional study of wood structure[J]. Holzforschung,1992,46(5):403-408. doi: 10.1515/hfsg.1992.46.5.403
    [25]
    WU J M, WU Y, YANG F, et al. Impact of delignification on morphological, optical and mechanical properties of transparent wood[J]. Composites Part A: Applied Science and Manufacturing,2019,117:324-331. doi: 10.1016/j.compositesa.2018.12.004
    [26]
    何胜君. 降低瓶胚制品雾度的研究[J]. 合成树脂及塑料, 2011, 28(1):44-47. doi: 10.3969/j.issn.1002-1396.2011.01.011

    HE S J. Study on reduction in haze of PET preform[J]. China Synthetic Resin and Plastics,2011,28(1):44-47(in Chinese). doi: 10.3969/j.issn.1002-1396.2011.01.011
    [27]
    林涛, 范晶, 殷学风, 等. 透明木材制备方法研究进展[J]. 现代化工, 2019, 39(8):43-48.

    LIN T, FAN J, YIN X F, et al. Progress in preparation of transparent wood composites[J]. Modern Chemical Industry,2019,39(8):43-48(in Chinese).
    [28]
    GAN W T, GAO L K, XIAO S L, et al. Transparent magnetic wood composites based on immobilizing Fe<sub>3</sub>O<sub>4</sub> nanoparticles into a delignified wood template[J]. Journal of Materials Science,2016,52(6):3321-3329.
    [29]
    李坚, 甘文涛, 高丽坤, 等. 一种荧光透明磁性木材的制备方法: 中国, CN 106313221A[P]. 2017-01-11.

    LI J, GAN W T, GAO L K, et al. A method of making a fluorescent transparent magnetic wood: China, CN 106313221A[P]. 2017-01-11(in Chinese).
    [30]
    SONG J W, CHEN C J, ZHU S, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature,2018,554(7691):224-228. doi: 10.1038/nature25476
    [31]
    VASILEVA E, LI Y Y, SYCHUGOV I, et al. Lasing from organic dye molecules embedded in transparent wood[J]. Advanced Optical Materials,2017,5(10):1700057. doi: 10.1002/adom.201700057
    [32]
    ZHU M W, SONG J W, LI T, et al. Highly anisotropic, highly transparent wood composites[J]. Advanced Materials,2016,28(26):5181-5187. doi: 10.1002/adma.201600427
    [33]
    WANG L H, LIU Y J, ZHAN X Y, et al. Photochromic transparent wood for photo-switchable smart window applications[J]. Journal of Materials Chemistry C,2019,7(28):8649-8654. doi: 10.1039/C9TC02076D
    [34]
    MONTANARI C L, LI Y Y, CHEN H, et al. Transparent wood for thermal energy storage and reversible optical transmittances[J]. ACS Applied Materials and Interfaces,2019,11(22):20465-20472. doi: 10.1021/acsami.9b05525
    [35]
    LI Y Y, FU Q L, YU S, et al. Optically transparent wood from a nanoporous cellulosic template: Combining functional and structural performance[J]. Biomacromolecules,2016,17(4):1358-1364. doi: 10.1021/acs.biomac.6b00145
    [36]
    ZHU Q, CHU Y, WANG Z K, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material[J]. Journal of Materials Chemistry A,2013,1(17):5386-5393. doi: 10.1039/c3ta00125c
    [37]
    WU L, LI L X, LI B C, et al. Magnetic, durable, and superhydrophobic polyurethane@Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@fluoropolymer sponges for selective oil absorption and oil/water separation[J]. ACS Applied Materials and Interfaces,2015,7(8):4936-4946. doi: 10.1021/am5091353
    [38]
    RUAN C P, AI K L, LI X B, et al. A superhydrophobic sponge with excellent absorbency and flame retardancy[J]. Angewandte Chemie International Edition,2014,53(22):5556-5560. doi: 10.1002/anie.201400775
    [39]
    HAYASE G, KANAMORI K, FUKUCHI M, et al. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water[J]. Angewandte Chemie International Edition,2013,52(7):1986-1989. doi: 10.1002/anie.201207969
    [40]
    ZHANG A J, CHEN M J, DU C, et al. Poly(dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and swellable skeleton[J]. ACS Applied Materials and Interfaces,2013,5:10201-10206. doi: 10.1021/am4029203
    [41]
    YU C L, YU C M, CUI L Y, et al. Facile preparation of the porous PDMS oil-absorbent for oil/water separation[J]. Advanced Materials Interfaces,2017,4(3):1600862. doi: 10.1002/admi.201600862
    [42]
    HAO Y, HU C G, HU Y, et al. A versatile, ultralight, nitrogen-doped graphene framework[J]. Angewandte Chemie International Edition,2012,51(45):11371-11375. doi: 10.1002/anie.201206554
    [43]
    BI H C, XIE X, YIN K B, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents[J]. Advanced Functional Materials,2012,22(21):4421-4425. doi: 10.1002/adfm.201200888
    [44]
    GUI X C, WEI J Q, WANG K L, et al. Carbon nanotube sponges[J]. Advanced Materials,2010,22(5):617-621. doi: 10.1002/adma.200902986
    [45]
    BERGLUND L A, BURGERT I. Bioinspired wood nanotechnology for functional materials[J]. Advanced Materials,2018,30(19):1704285. doi: 10.1002/adma.201704285
    [46]
    魏倩, 林韶晖, 冯献社, 等. 超疏水石墨烯/甲醛-三聚氰胺-亚硫酸氢钠共聚物海绵的制备及其在油水分离中的应用[J]. 复合材料学报, 2019, 36(7):1728-1736.

    WEI Q, LIN S H, FENG X S, et al. Synthesis of superhydrophobic graphene/formaldehyde-melamine-sodium bisulfite copolymer sponge and its application as absorbent for oil water separation[J]. Acta Materiae Compositae Sinica,2019,36(7):1728-1736(in Chinese).
    [47]
    LI L X, ZHANG J P, WANG A Q. Removal of organic pollutants from water using superwetting materials[J]. The Chemical Record,2018,18(2):118-136. doi: 10.1002/tcr.201700029
    [48]
    GUAN H, CHENG Z Y, WANG X Q. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano,2018,12(10):10365-10373. doi: 10.1021/acsnano.8b05763
    [49]
    CHEN C, SONG J W, ZHU S Z, et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge[J]. Chem,2018,4(3):544-554. doi: 10.1016/j.chempr.2017.12.028
    [50]
    王君妍, 周晶. 锂电池产业的发展趋势研究[J]. 商场现代化, 2019(10):173-175.

    WANG J Y, ZHOU J. Research on the development trend of lithium battery industry[J]. Market Modernization,2019(10):173-175(in Chinese).
    [51]
    YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications,2015,6(1):8058. doi: 10.1038/ncomms9058
    [52]
    ZHANG Y, LUO W, WANG C W, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. Proceedings of the National Academy of Sciences,2017,114(14):3584-3589. doi: 10.1073/pnas.1618871114
    [53]
    YAN Y H, XU H Y, PENG C X, et al. 3D phosphorus-carbon electrode with aligned nanochannels promise high-areal-capacity and cyclability in lithium-ion battery[J]. Applied Surface Science,2019,489:734-740. doi: 10.1016/j.apsusc.2019.05.329
    [54]
    WANG Y M, LIN X J, LIU T, et al. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors[J]. Advanced Functional Materials,2018,28(52):1806207. doi: 10.1002/adfm.201806207
    [55]
    韩景泉, 王慧祥, 岳一莹, 等. 纤维素纳米纤丝-碳纳米管/聚乙烯醇-硼酸盐复合导电水凝胶[J]. 复合材料学报, 2017, 34(10):2312-2320.

    HAN J Q, WANG H X, QIU Y Y, et al. Cellulose nanofiber-carbon nanotube/polyvinyl alcohol-borax hybrid conductive hydrogel[J]. Acta Materiae Compositae Sinica,2017,34(10):2312-2320(in Chinese).
    [56]
    WANG P, SUN J F, LOU Z C, et al. Assembly-induced thermogenesis of gold nanoparticles in the presence of alternating magnetic field for controllable drug release of hydrogel[J]. Advanced Materials,2016,28(48):10801-10808. doi: 10.1002/adma.201603632
    [57]
    MA C B, SHI Y, PENA D A, et al. Thermally responsive hydrogel blends: A general drug carrier model for controlled drug release[J]. Angewandte Chemie International Edition,2015,54(25):7484-7488.
    [58]
    LEE B P, KONST S R. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry[J]. Advanced Materials,2014,26(21):3415-3419. doi: 10.1002/adma.201306137
    [59]
    SHIN M K, SPINKS G M, SHIN S R, et al. Nanocomposite hydrogel with high toughness for bioactuators[J]. Advanced Materials,2009,21(17):1712-1715. doi: 10.1002/adma.200802205
    [60]
    YUK H, LIN S T, MA C, et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water[J]. Nature Communications,2017,8(1):14230. doi: 10.1038/ncomms14230
    [61]
    CHEN Z, TO J W F, WANG C, et al. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes[J]. Advanced Energy Materials,2014,4(12):1400207. doi: 10.1002/aenm.201400207
    [62]
    BENIGHT S J, WANG C, TOK J B H, et al. Stretchable and self-healing polymers and devices for electronic skin[J]. Progress in Polymer Science,2013,38(12):1961-1977. doi: 10.1016/j.progpolymsci.2013.08.001
    [63]
    TEE B C K, WANG C, ALLEN R, et al. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications[J]. Nature Nanotechnology,2012,7(12):825-832. doi: 10.1038/nnano.2012.192
    [64]
    ZHAO Y, LIU B R, PAN L J, et al. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices[J]. Energy and Environmental Science,2013,6(10):2856-2870. doi: 10.1039/c3ee40997j
    [65]
    SHI Y, PAN L J, LIU B R, et al. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes[J]. Journal of Materials Chemistry A,2014,2(17):6086-6091. doi: 10.1039/C4TA00484A
    [66]
    SHI Y, MA C B, PENG L L, et al. Conductive “smart” hybrid hydrogels with pnipam and nanostructured con-ductive polymers[J]. Advanced Functional Materials,2015,25(8):1219-1225. doi: 10.1002/adfm.201404247
    [67]
    SHI Y, PENG L L, YU G H, et al. Nanostructured conducting polymer hydrogels for energy storage applications[J]. Nanoscale,2015,7(30):12796-12806. doi: 10.1039/C5NR03403E
    [68]
    SHI Y, WANG M, MA C B, et al. A conductive self-healing hybrid gel enabled by metal-ligand supramolecule and nanostructured conductive polymer[J]. Nanoscale,2015,15(9):6276-6281.
    [69]
    LIU J, TAN C S, YU Z Y, et al. Biomimetic supramolecular polymer networks exhibiting both toughness and self-recovery[J]. Advanced Materials,2017,29(10):1604951. doi: 10.1002/adma.201604951
    [70]
    LIU Z S, CALVERT P. Multilayer hydrogels as muscle-like actuators[J]. Advanced Materials,2000,12(4):288-291. doi: 10.1002/(SICI)1521-4095(200002)12:4<288::AID-ADMA288>3.0.CO;2-1
    [71]
    ITAGAKI H, KUROKAWA T, FURUKAWA H, et al. Water-induced brittle-ductile transition of double network hydrogels[J]. Macromolecules,2010,43(22):9495-9500. doi: 10.1021/ma101413j
    [72]
    HU Z Q, CHEN G M. Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content[J]. Advanced Materials,2014,26(34):5950-5956. doi: 10.1002/adma.201400179
    [73]
    KONG W Q, WANG C W, JIA C, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J]. Advanced Materials,2018,30(39):1801934. doi: 10.1002/adma.201801934
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1495) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return