留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于临界刚度的复合材料筋材多变量优化设计方法

付晓 梅志远 陈国涛 张二 赵欣阳

付晓, 梅志远, 陈国涛, 等. 基于临界刚度的复合材料筋材多变量优化设计方法[J]. 复合材料学报, 2021, 38(8): 2616-2624. doi: 10.13801/j.cnki.fhclxb.20200927.001
引用本文: 付晓, 梅志远, 陈国涛, 等. 基于临界刚度的复合材料筋材多变量优化设计方法[J]. 复合材料学报, 2021, 38(8): 2616-2624. doi: 10.13801/j.cnki.fhclxb.20200927.001
FU Xiao, MEI Zhiyuan, CHEN Guotao, et al. Multivariable optimization design method of composite stiffener based on critical stiffness[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2616-2624. doi: 10.13801/j.cnki.fhclxb.20200927.001
Citation: FU Xiao, MEI Zhiyuan, CHEN Guotao, et al. Multivariable optimization design method of composite stiffener based on critical stiffness[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2616-2624. doi: 10.13801/j.cnki.fhclxb.20200927.001

基于临界刚度的复合材料筋材多变量优化设计方法

doi: 10.13801/j.cnki.fhclxb.20200927.001
基金项目: 国家自然科学基金(51609252);海军工程大学自主立项资助项目(425317S080);海军工程大学研究生创新基金(HGCXJJ2019026)
详细信息
    通讯作者:

    梅志远,博士,教授,博士生导师,研究方向为舰船结构强度与振动 E-mail:Zhiyuan_mei@163.com

  • 中图分类号: TB332;U663

Multivariable optimization design method of composite stiffener based on critical stiffness

  • 摘要: 以船舶结构优化设计为背景,针对目前结构安全余量过高导致加筋板板筋刚度过匹配现状,提出板筋刚度匹配临界刚度的概念,推导了板筋刚度比关系式。以T型复合材料筋材为对象,建立优化模型,基于Isight软件平台对设计变量进行灵敏度分析,简化设计变量。采用多岛遗传算法对筋材开展多变量优化设计,结合工程实际在筋材优化结果基础上确定设计方案,并开展复合材料加筋板力学性能试验研究,验证了多变量优化设计方法的可行性。研究表明:利用提出的加筋板板筋刚度比关系式,可以指导板筋刚度匹配设计;对T型复合材料筋材进行优化设计时,提升腹板高度对优化目标影响最明显;在等刚度约束前提下,提出的T型筋材优化设计方案能够较好地实现优化目标,同时保证了较优的经济性。

     

  • 图  1  筋材及其带板示意图

    Figure  1.  Schematic diagram of stiffener and attached plate

    Eq1, Eq2—Equivalent modulus of elasticity of stiffener and attached plate; d— Thickness of the attached plate; h—Height of the stiffener; b—Width of the stiffener; O—Neutral axis of the attached plate

    图  2  板筋刚度比函数曲线($b' = 1$$\nu = 0.05$)

    Figure  2.  Function curves of stiffness ratio between reinforcement and plate ($b' = 1$, $\nu = 0.05$)

    图  3  常用复合材料T型筋材示意图

    Figure  3.  Schematic diagram of common composite T-type stiffener

    B—Spacing of stiffener; L—Span; t—Thickness of the skin of web; t1—Thickness of table; h1—Height of web; T—Total thickness; b1—Width of core; b2—Width of panel; b'—Width of attached plate

    图  4  复合材料T型筋材优化流程

    Figure  4.  Optimization process of composite T-type stiffener

    图  5  工作流程

    Figure  5.  Workflow

    图  6  约束变量抗弯刚度DJ的灵敏度

    Figure  6.  Sensitivity of constrained variable bending stiffness DJ

    图  8  优化目标单位长度筋材的质量M的灵敏度

    Figure  8.  Sensitivity of optimization objective mass of the stiffener M

    图  7  优化目标筋材截面积S的灵敏度

    Figure  7.  Sensitivity of optimization objective cross sectional area S

    图  9  优化设计工作流程

    Figure  9.  Optimization design workflow

    图  10  T型筋材设计方案

    Figure  10.  Design scheme of T-type stiffener

    图  11  碳纤维增强环氧树脂复合材料加筋板剖面图

    Figure  11.  Section of carbon fiber reinforced epoxy stiffened plate

    图  12  碳纤维增强环氧树脂复合材料加筋板仿真模型

    Figure  12.  Simulation model of carbon fiber reinforced epoxy stiffened plate

    图  13  试验装置

    Figure  13.  Test device

    图  14  试验测点

    Figure  14.  Test points

    表  1  材料性能参数

    Table  1.   Material performance parameters

    MaterialYoung's modulus/GPaShear strength/MPaCompressive strength/MPaTensile strength/MPaDensity/
    (g∙cm−3)
    Poisson's
    ratio
    Buoyancy material 1.1 3 20 0.65 0.4
    T700/350 58.7 47.2 424 797 1.46 0.045
    下载: 导出CSV

    表  2  碳纤维增强环氧树脂复合材料T型筋材优化结果

    Table  2.   Optimization results of carbon fiber reiforced epoxy T-type stiffener

    Number of cyclesb1tt1h1MSDesign feasibility
    21 36.20 3.51 19.51 102.75 4633.38 5284.24 9
    125 35.98 3.51 19.51 102.75 4612.59 5257.16 9
    325 35.98 3.51 19.51 102.75 4612.48 5257.09 9
    328 35.97 3.51 19.53 102.75 4612.33 5256.24 9
    393 33.32 4.10 16.22 109.98 4612.75 5239.33 9
    494 33.32 4.10 16.22 109.94 4611.48 5237.75 9
    692 33.32 4.10 16.22 109.94 4611.00 5237.09 9
    693 33.24 4.10 16.22 109.94 4603.67 5227.24 9
    800 33.24 4.10 16.22 109.94 4603.64 5227.20 9
    892 33.24 4.09 16.22 109.94 4602.55 5226.44 9
    Notes: M—Mass of the stiffener; S—Cross sectional area.
    下载: 导出CSV

    表  3  碳纤维增强环氧树脂复合材料加筋板测点试验值与仿真值(载荷为100 kPa)

    Table  3.   Experimental values and simulation values of carbon fiber reinforced epoxy stiffened plate (Load is 100 kPa)

    Measuring pointTest valueSimulation valueError/%
    Strain Ⅰ#/10−6 219.3 238.9 8.9
    Strain Ⅱ#/10−6 535.6 579.8 8.3
    Displacement 1#/mm 0.36 0.34 5.6
    Displacement 2#/mm 0.23 0.22 5.7
    下载: 导出CSV
  • [1] 高海昌, 梅志远, 杨国威, 等. 夹层结构主动温控变阻尼振动控制技术[J]. 复合材料学报, 2020, 37(4):816-823.

    GAO Haichang, MEI Zhiyuan, YANG Guowei, et al. Active temperature controlled variable damping technology for sandwich structure[J]. Acta Materiae Compositae Sinica,2020,37(4):816-823(in Chinese).
    [2] 杜春雷. 压缩载荷下基于刚度匹配性的复合材料加筋板破坏分析[D]. 大连: 大连理工大学, 2014.

    DU Chunlei. Failure analysis of intergral stiffened compo-site panel considering stiffness matching under uniaxial compression[D]. Dalian: Dalian University of Technology, 2014(in Chinese).
    [3] 韩国凯, 解维华, 孟松鹤, 等. 防隔热一体化复合材料整体性能优化设计方法[J]. 复合材料学报, 2019, 36(2):450-460.

    HAN Guokai, XIE Weihua, MENG Songhe, et al. Optimization design method of integrated thermal protection/iusulation composite material[J]. Acta Materiae Compositae Sinica,2019,36(2):450-460(in Chinese).
    [4] HAMZEHKOLAEI N S, MIRI M, RASHKI M. Reliability based design optimization of rotating FGM cylindrical shells with temperature-dependent probabilistic frequency constrains[J]. Aerospace Science and Technology,2017,68:223-239. doi: 10.1016/j.ast.2017.05.004
    [5] 刘哲, 金达锋, 范志瑞. 基于密度分布曲线法的复合材料变刚度铺层优化[J]. 复合材料学报, 2015, 32(6):1737-1744.

    LIU Zhe, JIN Dafeng, FAN Zhirui. Ply optimization of variable stiffness for composite based on density distribution curve method[J]. Acta Materiae Compositae Sinica,2015,32(6):1737-1744(in Chinese).
    [6] OOTAO Y, TANIGAW A Y, ISHIMARU O. Optimization of material composition of functionally graded plate for thermal stress relaxation using a genetic algorithm[J]. Journal of Thermal Stresses,2000,23:257-271. doi: 10.1080/014957300280434
    [7] LIEU Q X, LEE J. Modeling and optimization of functionally graded plates under thermomechanical load using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm[J]. Composite Structures,2017,179:89-106. doi: 10.1016/j.compstruct.2017.07.016
    [8] 邬沛, 李玉顺, 许达, 等. 基于遗传算法的钢-竹组合工字形梁截面优化设计[J]. 建筑结构学报, 2020, 41(1):149-154.

    WU Pei, LI Yushun, XU Da, et al. Multi-objective optimal section design of I-shaped section steel-bamboo compo-site beam using genetic algorithm[J]. Journal of Building Structures,2020,41(1):149-154(in Chinese).
    [9] DE MUNCK M, DE SUTTER S, VERBRUGGEN S, et al. Multi-objective weight and cost optimization of hybrid compo-site-concrete beams[J]. Composite Structures,2015,134:369-377. doi: 10.1016/j.compstruct.2015.08.089
    [10] 杨丰福, 田海英, 颜昌翔, 等. Isight环境下基于视轴抖动误差的镜头结构优化[J]. 红外与激光工程, 2019, 48(1):0118005. doi: 10.3788/IRLA201948.0118005

    YANG Fengfu, TIAN Haiying, YAN Changxiang, et al. Optimization of the lens structure based on the line of sight jitter error in Isight environment[J]. Infrared and Laser Engineering,2019,48(1):0118005(in Chinese). doi: 10.3788/IRLA201948.0118005
    [11] SENOUCI A B, AL-ANSARI M S. Cost optimization of composite beams using genetic algorithms[J]. Advances in Engineering Software,2009,40(11):1112-1118. doi: 10.1016/j.advengsoft.2009.06.001
    [12] KIHM H, YANG H S. Design optimization of a 1-m lightweight mirror for a space telescope[J]. Optical Engineering,2013,52(9):091806. doi: 10.1117/1.OE.52.9.091806
    [13] 金达锋, 刘哲, 范志瑞. 基于遗传算法的复合材料层合板削层结构铺层优化[J]. 复合材料学报, 2015, 32(1):236-242.

    JIN Dafeng, LIU Zhe, FAN Zhirui. Ply optimization of composite laminate with ply drop based on genetic algorithm[J]. Acta Materiae Compositae Sinica,2015,32(1):236-242(in Chinese).
    [14] CORREIA V M F, MADEIRA J F A, ARAÚJO A L, et al. Multiobjective optimization of ceramtic-metal functionally graded plates using a higher order model[J]. Composite Structures,2018,183:146-160. doi: 10.1016/j.compstruct.2017.02.013
    [15] 赵群, 丁运亮, 金海波. 基于压弯刚度匹配论则的复合材料加筋板结构优化设计[J]. 南京航空航天大学学报, 2010, 42(3):357-362. doi: 10.3969/j.issn.1005-2615.2010.03.020

    ZHAO Qun, DING Yunliang, JIN Haibo. Structual optimization design of composite stiffened panels based on matching regulations of compression and bending stiffness[J]. Journal of Nanjing University of Aeronautics and Astronautics,2010,42(3):357-362(in Chinese). doi: 10.3969/j.issn.1005-2615.2010.03.020
    [16] 赵群, 丁运亮, 金海波. 一种基于复合材料加筋板结构效率的稳定性优化方法[J]. 复合材料学报, 2010, 27(3):169-176.

    ZHAO Qun, DING Yunliang, JIN Haibo. Buckling optimization method based on structure efficiency of composite stiffened panels[J]. Acta Materiae Compositae Sinica,2010,27(3):169-176(in Chinese).
    [17] 肖志鹏, 钱文敏, 周磊. 考虑壁板刚度匹配的大型飞机复合材料机翼气动弹性优化设计[J]. 北京航空航天大学学报, 2018, 44(8):1629-1635.

    XIAO Zhipeng, QIAN Wenmin, ZHOU Lei. Aeronautics and optimization design of composite wing for large aircraft with panel stiffness matching[J]. Journal of Beijing University of Aeronautics,2018,44(8):1629-1635(in Chinese).
    [18] 吴梵, 朱锡, 梅志远. 船舶结构力学[M]. 北京: 国防工业出版社, 2010: 137.

    WU Fan, ZHU Xi, MEI Zhiyuan. Ship structural mechanics[M]. Beijng: National Defense Industry Press, 2010: 137(in Chinese).
    [19] 中国船级社. 纤维增强塑料船建造规范2016[S]. 北京: 人民交通出版社, 2016.

    China Classification Society. Code for construction of FRP ships 2016[S]. Beijing: China Communications Press, 2016(in Chinese).
    [20] 杨成, 陈建钧, 袁伟杰, 等. 复合材料光伏支架梁结构优化分析[J]. 太阳能学报, 2020, 41(3):306-310.

    YANG Cheng, CHEN Jianjun, YUAN Weijie, et al. Structual optimization of composite photovoltaic supporting beam[J]. Acta Energiae Solaris Sinica,2020,41(3):306-310(in Chinese).
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1008
  • HTML全文浏览量:  352
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 录用日期:  2020-09-18
  • 网络出版日期:  2020-09-27
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回