留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

当期目录

2020年 第37卷  第9期

原位聚合法制备聚丙烯酸修饰的ZnS量子点
杨春风, 李勰, 张颖鑫, 王婷婷, 王会
2020, 37(9): 2258-2264. doi: 10.13801/j.cnki.fhclxb.20200103.003
摘要:
采用原位聚合法对ZnS量子点表面进行聚丙烯酸(PAA)的修饰。利用XRD、FTIR、TEM、TGA、荧光测试等对ZnS@PAA复合纳米粒子进行系列表征。XRD分析表明,修饰后的ZnS仍为立方晶相。FTIR和TGA结果证明,ZnS纳米粒子表面存在PAA。TEM结果表明,修饰后ZnS@PAA复合纳米粒子在去离子水中分散良好,其直径有所增加,约为28 nm,且呈较明显的核-壳结构。荧光测试发现,修饰PAA前后ZnS@PAA复合纳米粒子的发光特性没有发生明显改变。实验表明,经PAA修饰后,ZnS@PAA复合纳米粒子在水溶液中的分散性和稳定性得到提高,抗氧化性和荧光稳定性也得到了一定的增强。
Co修饰CeO2复合材料的晶面调控及其光热催化脱硝性能
马恬, 朱晨, 刘成宝, 余辰辰, 张文雅, 钱君超, 陈志刚
2020, 37(9): 2265-2271. doi: 10.13801/j.cnki.fhclxb.20200323.001
摘要:
采用一步水热法,通过调节Co与Ce的摩尔比,制备出暴露高活性晶面的Co修饰CeO2复合材料。利用比表面和孔径分析仪、TG-DSC、TEM、SEM、XRD、紫外-可见分光光度计(UV-vis)、XPS、光热催化脱硝技术对Co修饰CeO2复合材料进行全面表征。结果表明,随着Co元素含量的增加,Co修饰CeO2复合材料的比表面积增大,CeO2呈纳米棒状结构,Co与表面氧生成Co3O4,二者的共结晶过程降低了复合材料的结晶表面能,使CeO2主要暴露(200)和(220)高活性晶面,且暴露比例增大。光热催化脱硝结果表明,当Co与Ce摩尔比为15%、煅烧温度为400℃时,Co修饰CeO2复合材料的光热催化效率达到最高,为98%。
纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能
李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博
2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002
摘要:
利用纳米SiO2(nano SiO2)早期可促进聚合物水泥基复合材料水化速率、提升其力学性能、改善其界面过渡区(ITZ)性能及优化其孔隙结构等特点,借助XRD、SEM、EDS、显微硬度(MH)及压汞(MIP)等试验,揭示了nano SiO2对聚合物水泥基复合材料早期性能影响的微观机制。结果表明:当nano SiO2掺量为2wt%时,聚合物水泥基复合材料的力学性能最优,3 d和7 d龄期抗压强度分别为57.5 MPa和67.3 MPa,较仅仅掺加聚合物的水泥基复合材料分别提高了12.7%和13.9%;nano SiO2的掺入改变了聚合物水泥基复合材料水化产物数量及微观形貌。对于ITZ性能,nano SiO2掺入后,聚合物水泥硬化浆体-骨料的ITZ厚度减小,形貌变得更加致密;ITZ的钙硅比因nano SiO2的加入变小而其显微硬度变大;此外,nano SiO2加入后可以进一步填充聚合物水泥基复合材料更加细小的孔隙,使其凝胶孔比例变高,最可几孔径变小,大大优化了聚合物水泥基复合材料的孔隙结构。
不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响
薛维培, 刘晓媛, 姚直书, 程桦, 李昊鹏
2020, 37(9): 2285-2293. doi: 10.13801/j.cnki.fhclxb.20200219.001
摘要:
为了研究玄武岩纤维增强混凝土在高温和力学两种损伤源下的孔隙结构变化特征,采用核磁共振(NMR)和扫描电镜(SEM)技术,观察试件T2谱分布、孔径分布、孔洞和裂隙发育情况。结果表明,高温作用后基准混凝土、短玄武岩纤维增强混凝土、长玄武岩纤维增强混凝土均呈微孔数量不断减小、介孔数量不断增加的趋势。通过对比发现,长玄武岩纤维增强混凝土T2谱主峰孔隙数量最多,孔径分布最大。以长玄武岩纤维增强混凝土为例,研究在高温和力学两种损伤源下玄武岩纤维增强混凝土的孔隙结构变化特征。发现弛豫时间在0.1~10 ms内高温损伤下玄武岩纤维增强混凝土的孔隙数量大于力学损伤下的孔隙数量,且随着温度升高,T2谱主峰向右偏移,随着荷载增加,T2谱主峰几乎不发生变化,表明温度升高更能加剧损伤,每级温度作用下新生孔径不断增大。T2谱主峰幅值和孔径分布随温度升高不断增大,随荷载增加出现先减小后增大的现象,表明高温作用对混凝土直接构成损伤,而力学作用使混凝土先密实再产生损伤,SEM观察得到了相同的结论。
冻融循环对CFRP-烧结粘土砖界面粘结性能影响
靳文强, 赵建昌, 王琦, 郭乐乐, 聂丹
2020, 37(9): 2294-2302. doi: 10.13801/j.cnki.fhclxb.20200111.002
摘要:
为考察冻融循环对碳纤维增强聚合物复合材料(CFRP)-烧结粘土砖界面粘结性能的影响,通过模拟自然冻融环境,在试件经过不同次数的冻融循环后对其进行单面剪切试验。结果表明:在冻融循环作用下,CFRP-烧结粘土砖试件界面粘结性能发生了显著的退化,即随着冻融循环次数的增加,界面承载力和剪应力不断降低;界面剪应力在不同冻融次数下的分布具有相似性,均表现为随着荷载的增加剪应力逐渐由加载端向自由端传递,在传递过程中,有效传递长度变化不显著。在已有界面理论的基础上,根据试验提出了考虑冻融循环时间的界面粘结-滑移模型,通过对比分析,该模型能够很好地反映冻融循环作用下界面粘结性能退化规律。
结构型纤维对混凝土弯曲韧性和裂缝表面形态的影响
曾伟, 丁一宁
2020, 37(9): 2303-2313. doi: 10.13801/j.cnki.fhclxb.20191213.002
摘要:
为了研究结构型聚丙烯纤维、结构型钢纤维及混杂纤维(包括结构型聚丙烯纤维和结构型钢纤维)对混凝土弯曲韧性及裂缝表面形态的影响,参照RILEM TC 162-TDF[10]标准进行混凝土开口梁的三点弯曲试验。利用激光扫描仪对每个试件裂缝表面形态进行信息采集。基于裂缝表面信息,计算了四种裂缝表面粗糙程度参数(即裂缝粗糙度(RN)、分形维数(D)、z坐标正态分布的标准差(σz)和裂缝曲折度(τ)),并比较分析了裂缝表面粗糙程度参数与弯曲韧性参数之间的相关性。研究表明:随着纤维掺量的增多,混凝土弯曲韧性和裂缝表面粗糙程度均随之增大。与结构型聚丙烯纤维和结构型钢纤维相比,混杂纤维在提高混凝土弯曲韧性和增大混凝土裂缝表面粗糙度方面均展现出正混杂效应。与分形维数Dz坐标正态分布标准差σz和裂缝曲折度τ相比,裂缝粗糙度RN与纤维增强混凝土梁弯曲韧性参数的相关性最为显著,且存在指数函数关系。基于该函数关系,可借助纤维增强混凝土梁的弯曲试验快速估测裂缝表面的粗糙程度。
荷载作用下结构型纤维对混凝土裂缝渗透率演化的影响
曾伟, 丁一宁
2020, 37(9): 2314-2323. doi: 10.13801/j.cnki.fhclxb.20191213.001
摘要:
为研究荷载作用下结构型钢纤维和结构型聚丙烯纤维对混凝土裂缝渗透率演化的影响,通过劈拉试验引入混凝土裂缝,同时利用真空渗水试验装置对不同裂缝宽度下混凝土裂缝渗透率进行实时测量和分析。借助激光扫描仪对混凝土裂缝表面形态进行信息采集和形态重构。对比分析了结构型钢纤维、结构型聚丙烯纤维及混杂纤维(包括结构型钢纤维和结构型聚丙烯纤维)对混凝土裂缝渗透率及裂缝表面形态的影响。研究表明:结构型纤维可通过增大裂缝表面粗糙程度降低混凝土裂缝渗透率,且随着纤维掺量的增高,混凝土裂缝渗透率随之减小。对比单掺纤维混凝土,混杂纤维混凝土具有更粗糙的裂缝表面,且展现出更显著的裂缝抗渗性能;随着裂缝的扩展,混凝土裂缝渗透率更接近于泊肃叶渗流模型;相比于泊肃叶渗流模型修正系数ξ,本文所用渗透率参数α更适合量化结构型纤维对混凝土裂缝渗透率的影响。
灰粉比对苯丙乳液基水泥复合材料静态力学性能及破坏形态的影响
王腾蛟, 许金余, 朱从进, 任韦波
2020, 37(9): 2324-2335. doi: 10.13801/j.cnki.fhclxb.20200212.002
摘要:
对不同灰粉比的苯丙乳液基水泥复合材料进行定伸、拉伸和剪切试验,通过测量弹性恢复率、拉伸剪切力学性能指标、变形性能指标、能耗性能指标和负荷位移,研究了灰粉比对苯丙乳液基水泥复合材料定伸黏结性能、拉伸力学性能、剪切力学性能及破坏形态的影响,结合FESEM试验和压汞测孔(MIP)试验结果,分析了灰粉比对苯丙乳液基水泥复合材料力学性能及破坏形态影响规律的微观机制。结果表明:适当增大灰粉比能够改善苯丙乳液基水泥复合材料的微观形貌,优化孔隙结构,提高密实度,显著增强了复合材料的力学性能;随着灰粉比的增大,苯丙乳液基水泥复合材料的定伸黏结性能逐渐降低,拉伸剪切力学性能不断增强,拉伸剪切变形性能和能耗性能均先提升后降低。灰粉比为30%~35%时,苯丙乳液基水泥复合材料的拉伸剪切力学性能最佳;灰粉比为45%时,苯丙乳液基水泥复合材料的拉伸剪切变形性能和能耗性能均低于灰粉比为20%的苯丙乳液基水泥复合材料。随着灰粉比的增大,苯丙乳液基水泥复合材料能够承受的拉伸和剪切负荷位移均先增大后减小,其破坏形态逐步由“内聚破坏”转为“黏结破坏”。
聚丙烯-钢纤维/混凝土柱大偏心受压承载力计算
张广泰, 曹银龙, 李瑞祥, 张路杨, 陈勇
2020, 37(9): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20200201.001
摘要:
对270个聚丙烯纤维掺量(体积分数)分别为0vol%、0.1vol%、0.2vol%、0.3vol%、0.4vol%、0.5vol%、钢纤维掺量(体积分数)分别为0vol%、0.5vol%、1vol%、1.5vol%、2vol%的聚丙烯-钢纤维/混凝土试块进行立方体抗压试验、轴心抗压试验和劈裂抗拉试验,基于复合材料力学理论,考虑纤维的取向系数、长度有效系数和界面黏结系数,对其建立强度预测模型并进行机制分析,同时选取掺量分别为0vol%、0.1vol%、0.3vol%的聚丙烯纤维、掺量分别为0vol%、1.5vol%的钢纤维制作6根聚丙烯-钢纤维/混凝土柱,对其进行大偏心受压试验,在强度预测模型的基础上进行承载力计算,提出聚丙烯-钢纤维/混凝土承载力计算方法。结果表明:钢纤维对聚丙烯-钢纤维/混凝土立方体抗压强度、轴心抗压强度和劈裂抗拉强度均有提高;聚丙烯纤维可提高聚丙烯-钢纤维/混凝土的劈裂抗拉强度,但不能提高聚丙烯-钢纤维/混凝土的抗压强度;聚丙烯-钢混杂纤维加入混凝土柱可有效提高其极限承载力。
混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算
徐可, 陆春华, 宣广宇, 张灵灵, 倪铭志, 刘荣桂
2020, 37(9): 2348-2357. doi: 10.13801/j.cnki.fhclxb.20200212.003
摘要:
为研究玻璃纤维增强聚合物复合材料(GFRP)筋与普通钢筋混合配筋钢纤维增强混凝土(SF/混凝土)梁的受弯性能及其受弯承载力计算方法,在考虑受拉区混凝土抗拉强度的基础上,给出混合配筋SF/混凝土梁的界限配筋率及受弯承载力计算公式;在此基础上设计制作了三种配筋方式的SF/混凝土梁,重点探讨了混合配筋率及筋材面积比(Af/As)对试验梁失效模式和受弯承载力的影响;同时,借助已有相关试验结果,对比分析了混凝土强度对混合配筋SF/混凝土梁受弯性能的影响。试验和对比分析结果表明:混合配筋SF/混凝土梁正截面应变仍符合平截面假定;相同配筋形式下,混合配筋SF/混凝土梁的受弯承载力和跨中挠度随筋材面积比Af/As的增加而增大;单层配筋梁的受弯承载力比双层配筋梁大;合理提高混凝土强度可在充分发挥GFRP筋抗拉作用的同时进一步提高混合配筋SF/混凝土梁的受弯承载力;采用本文给出的界限配筋率公式能有效预测混合配筋SF/混凝土梁的失效模式;梁受弯承载力建议公式的预测值与试验值吻合较好,具有良好的适用性。
基于Griffith破坏准则的FRP约束未损伤混凝土和损伤混凝土的抗压强度统一模型
张扬, 曹玉贵, 胡志礼
2020, 37(9): 2358-2366. doi: 10.13801/j.cnki.fhclxb.20191223.002
摘要:
纤维增强聚合物复合材料(FRP)约束混凝土的抗压强度是进行FRP加固混凝结构设计的重要参数。现有的FRP约束混凝土柱抗压强度模型大部分采用试验数据回归分析获得,只有极少数模型基于理论推导建立,因此有必要对基于理论推导建立的抗压强度模型进行扩展。本文通过对现有的FRP约束混凝土柱的抗压强度模型进行归纳和总结,并采用已发表文献的大量试验数据对其进行评估。然后基于Griffith破坏准则,提出一个可以同时预测FRP约束未损伤混凝土和损伤混凝土抗压强度统一模型并进行评估。评估结果表明,新建立的抗压强度模型可以较准确地预测FRP约束未损伤混凝土和损伤混凝土的抗压强度。
综述
水泥基复合材料热电效应综述:机制、材料、影响因素及应用
崔一纬, 魏亚
2020, 37(9): 2077-2093. doi: 10.13801/j.cnki.fhclxb.20200423.002
摘要:
在水泥基复合材料中掺入功能填料会使其获得将热能转化为电能的热电效应,可用于环境热量转换收集、混凝土结构健康检测传感器和智慧交通系统等方面。本文总结了热电水泥基复合材料(TECC)的热电效应机制、常用的功能填料、制备过程及主要工程应用,重点分析了不同功能填料对TECC热电效应的增强效果和机制,及材料分散程度、水分、疲劳荷载、温度循环等因素对TECC热电效应的影响机制。本综述指明了TECC在理论和应用方面的研究新方向,对今后水泥基复合材料热电效应的实验设计和性能提升具有指导作用。
树脂基复合材料
空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能
刘秀玉, 张冰, 韩祥祥, 刘亚辉, 赵石旭, 唐刚
2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002
摘要:
以空心玻璃微珠(HGM)为添加剂,采用一步法全水发泡制备了一系列HGM/硬质聚氨酯泡沫(RPUF)复合材料。通过SEM、TG、极限氧指数(LOI)和水平燃烧,研究了HGM/RPUF复合材料的泡孔结构、炭层形貌、热稳定性及阻燃性能。采用万能材料试验机测试了HGM/RPUF复合材料的压缩强度和压缩弹性模量。采用热重-傅里叶红外光谱(TG-FTIR)研究了HGM/RPUF复合材料燃烧过程中的气相产物。研究表明,HGM有成核剂作用,可以缩小HGM/RPUF复合材料泡孔孔径。HGM在燃烧过程中迁移到炭层表面,促进形成致密厚实的炭层。当加入5.4wt% HGM时,HGM/RPUF复合材料的压缩强度及压缩弹性模量分别提高至0.14 MPa和4.53 MPa,相对RPUF,分别提高了37.30%和67.16%。同时发现,HGM能明显抑制HGM/RPUF复合材料在燃烧过程中CO的释放,有效提高了其火灾安全性。
基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料
顾升, 王雪, 徐国祺
2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002
摘要:
以纳米纤维素(CNF)、羧基化碳纳米管(CNTs—COOH)、铅笔石墨(PGr)、聚吡咯(PPy)为原料,通过真空抽滤、涂覆、氧化聚合等方法,同时基于氢键界面相互作用的原理,制备出具有石墨层结构的CNF-CNTs—COOH-PGr/PPy柔性电极复合材料。结果表明,CNF-CNTs—COOH-PGr/PPy柔性电极复合材料在平直、折叠和拉伸时不会断裂,展现出较强的力学性能,其拉伸强度达到28.90 MPa。亲水性CNF与CNTs—COOH构筑的多孔结构增强了离子和电子的扩散路径。PGr的加入有效增加了CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的导电路径,赋予其优良的导电性能。氧化聚合后得到的CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的电导率达到5.403 S·cm−1。在1 mol·L−1 H2SO4溶液中,0.5 A·g−1电流密度下,CNF-CNTs—COOH-PGr/PPy柔性电极复合材料具有521 F·g−1的高比电容量,且经过1 500次充放电循环后,其电容保持率高达68%。基于柔性电极优良的力学性能、电化学性能和导电性能,CNF-CNTs—COOH-PGr/PPy柔性电极复合材料具备成为柔性储能器件电极材料的基本特性。
含磷聚芳醚酮-双马来酰亚胺树脂(PAEK-P-BMI)及碳纤维/PAEK-P-BMI复合材料
胡晓兰, 刘文军, 余荣禄, 周川, 李伟东, 周玉敬, 刘刚, 益小苏
2020, 37(9): 2117-2124. doi: 10.13801/j.cnki.fhclxb.20200115.001
摘要:
为提高树脂传递模塑(RTM)复合材料的整体韧性,结合“离位”复合增韧技术和RTM制造技术,应用新型热塑性含磷聚芳醚酮(PAEK-P)对碳纤维/双马来酰亚胺树脂(CF/BMI)复合材料进行增韧改性,研究了PAEK-P-BMI复合树脂的流变性能、分相行为及PAEK-P对CF/BMI复合材料韧性的影响。结果表明,分子链的刚性结构使PAEK-P具有高的耐热性,玻璃化转变温度达到268.8℃,PAEK-P在BMI树脂中的溶解性较差,PAEK-P-BMI复合树脂凝胶时间和黏度急增拐点时间受PAEK-P含量的影响很小;PAEK-P-BMI复合树脂在110℃/300 min条件下未出现相分离,但在后期的高温固化过程形成了分相结构,并在CF/PAEK-P-BMI复合材料中保持了分相形貌;与CF/BMI复合材料相比,CF/PAEK-P-BMI复合材料的冲击后损伤投影面积降低了69%,冲击后压缩强度提高了16.6%,冲击凹坑深度减小了34.4%。
磷钨酸插层ZnAl层状双金属氢氧化物协同膨胀阻燃剂对环氧-聚酰胺树脂的阻燃作用
汤连东, 吴袁泊, 袁利萍, 胡云楚, 刘月姣, 范友华
2020, 37(9): 2125-2136. doi: 10.13801/j.cnki.fhclxb.20200512.001
摘要:
采用[PW12O40]3−离子柱撑插层共沉淀法合成的ZnAl硝酸根(NO3-ZnAl)层状双金属氢氧化物(LDHs),制备了PW12O40-ZnAl LDHs,并利用XRD、FTIR、电感耦合等离子体(ICP)、SEM等进行组成和结构的表征。将NO3-ZnAl LDHs和PW12O40-ZnAl LDHs分别与含聚磷酸铵、三聚氰胺、季戊四醇的膨胀阻燃剂(IFRs)复合阻燃环氧-聚酰胺树脂(EP-PA),采用TGA、背温实验和锥形量热实验评价不同ZnAl LDHs与IFRs复合阻燃EP-PA的热及烟气的释放规律。TGA结果表明,PW12O40-ZnAl-IFRs/(EP-PA)复合材料的最大降解速率最小,残炭率最高,说明PW12O40-ZnAl LDHs提高了IFRs/(EP-PA)复合材料高温下的抗氧化能力。背温实验表明,相同热辐射强度下,PW12O40-ZnAl-IFRs/(EP-PA)复合材料的背温达到200℃和300℃用时最长,具有最低的背温升温速率,说明PW12O40-ZnAl LDHs使IFRs/(EP-PA)复合材料耐火能力明显增强。从锥形量热实验数据可知,PW12O40-ZnAl-IFRs使PW12O40-ZnAl-IFRs/(EP-PA)复合材料具有最低的热释放速率峰值(PHRR)、平均热释放速率(MHRR)、平均有效燃烧热(MEHC)和总热释放量(THR),其火势增长指数(FGI)仅为IFRs/(EP-PA)复合材料的14.5%,烟释放总量(TSP)比NO3-ZnAl-IFRs/(EP-PA)复合材料减少了27.6%,比IFRs/(EP-PA)复合材料减少了55.3%。说明PW12O40-ZnAl-IFRs比NO3-ZnAl-IFRs更能有效地减少EP-PA的热量释放,抑制烟气生成。
基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能
周文英, 张财华, 李旭, 张帆, 张祥林
2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001
摘要:
为降低硅粒子/聚偏氟乙烯(Si/PVDF)复合材料体系的介电损耗(tanδ)及提高其击穿强度(Eb),采用高温氧化及聚苯乙烯(PS)包覆法,制备出两种分别具有SiO2单壳及SiO2@PS双壳的Si@SiO2和Si@SiO2@PS核壳结构粒子。采用FTIR、XRD和TEM分析测试了核壳粒子的壳层结构。分析测试证明,Si粒子表面存在SiO2和PS壳层。结果表明,相比未改性Si/PVDF复合材料,SiO2外壳显著降低和抑制了Si@SiO2/PVDF复合材料的tanδ和漏导电流;PS层改进了Si/PVDF复合材料的界面相容性,促进其在基体中均匀分散。双壳结构Si@SiO2@PS/PVDF复合材料呈现出最低tanδ和最高Eb。Si@SiO2/PVDF和Si@SiO2@PS/PVDF复合材料介电性能的改善归因于Si表面SiO2及SiO2@PS绝缘界面层有效阻止了半导体Si粒子间的直接接触,极大抑制了损耗。此外,Si/PVDF复合材料相界面缺陷减少及界面相容性改善均有效降低了局部电场畸变,提高了体系的Eb。Si@SiO2@PS/PVDF复合材料在1 kHz下介电常数高达48,tanδ低至0.07,Eb约为6 kV/mm,在微电子器件及电力设备领域具有潜在的应用价值。
SiO2表面改性对高填充SiO2/聚四氟乙烯复合薄膜性能的影响
周茜, 张瑶, 陈蓉, 沈佳斌, 郭少云
2020, 37(9): 2144-2151. doi: 10.13801/j.cnki.fhclxb.20191219.002
摘要:
选用三种具有不同疏水官能团的硅烷偶联剂,即含苯基的偶联剂1(Ph-1)、含氟基的偶联剂2(F-2)和含环氧丙氧基的偶联剂3(GP-3)对SiO2进行表面改性,并采用空气辅助干法共混、冷压烧结并车削成膜的方法制备了SiO2填充量为35wt%、厚度为50 μm的SiO2/聚四氟乙烯(PTFE)复合薄膜。改性后SiO2在PTFE中分散均匀。研究了不同含量F-2对SiO2/PTFE复合薄膜性能的影响,发现当含氟基的硅烷偶联剂F-2用量(与SiO2质量比)为0.3%时,SiO2/PTFE复合薄膜的针孔缺陷最少,拉伸强度由9.2 MPa提高至16.2 MPa;在10 GHz下,SiO2/PTFE复合薄膜的介电常数由2.475降低至2.416,介电损耗由2.66×10−3降低至2.01×10−3,SiO2/PTFE复合薄膜显示出优异的综合性能。
基于RTM技术的碳纤维/聚酰亚胺复合材料舵面一体化制备与验证
江晟达, 罗楚养, 张朋, 文子豪, 蔡培培
2020, 37(9): 2152-2162. doi: 10.13801/j.cnki.fhclxb.20200429.002
摘要:
设计了一种碳纤维/聚酰亚胺复合材料舵面结构,采用PAM-RTM软件模拟了舵面在注胶过程中的树脂流动,根据模拟结果设计了成型模具,并通过树脂传递模塑(RTM)工艺制备了耐高温碳纤维/聚酰亚胺复合材料舵面,对其进行了力学试验,并将三维有限元分析结果与试验结果对比。试验结果表明,碳纤维/聚酰亚胺复合材料舵面在150%的使用载荷下保持了结构的完整性,骨架的最大应变为2 408×10–6,复合材料蒙皮的最大应变为2 371×10–6。有限元分析结果表明,金属骨架的最大应力出现在舵轴根部圆弧过渡区,而碳纤维/聚酰亚胺复合材料蒙皮的最大应力出现在与垫片外圆弧接触处;碳纤维/聚酰亚胺复合材料舵面的初始破坏为蒙皮单向带横向拉伸失效。
碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制
郭丽君, 陆方舟, 李想, 蔡登安, 张庆茂, 陈建农, 刘伟先, 周光明
2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001
摘要:
通过试验及数值模拟对碳纤维/环氧树脂复合材料缠绕接头轴向拉伸失效机制进行研究。基于ABAQUS有限元软件,通过连续介质损伤模型及内聚区模型,分别对碳纤维/环氧树脂复合材料缠绕接头各部件及界面进行模拟,编写用户自定义材料子程序(UMAT),建立复合材料的渐进损伤模型,最终得到碳纤维/环氧树脂复合材料缠绕接头的应力分布和载荷-位移曲线,并与试验结果对比确定结构的失效机制。结果表明:有限元分析所得碳纤维/环氧树脂复合材料缠绕接头损伤部位及失效模式与试验吻合,失效载荷与试验值相差较小,证明仿真分析方法的有效性。通过对比失效模式发现,拉伸载荷作用下,链环是主承力部件,其弧形端部是应力集中处,纤维断裂即从此处开始发生并向外扩展,导致链环断裂及整体结构破坏。
基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为
丁春香, 潘明珠, 杨舒心, 梅长彤
2020, 37(9): 2173-2182. doi: 10.13801/j.cnki.fhclxb.20200122.001
摘要:
以木纤维/高密度聚乙烯(WF/HDPE)复合材料界面应变为研究对象,采用数字图像相关技术(DIC)探究WF(质量分数为10wt%~40wt%)及改性聚磷酸铵(mAPP)阻燃剂(质量分数为10wt%~25wt%)对WF/HDPE复合材料应变分布及传递的演变规律,并结合力学性能测试和SEM对其拉伸性能、冲击性能、界面结合进行分析。结果表明:随着WF添加量从10wt%增至30wt%,WF/HDPE复合材料应变传递较为平稳,由受力两端向复合材料轴中心均匀传递,当WF添加量为30wt%时,高应变在复合材料上约1/2区域得到了有效传递,此时,复合材料的拉伸强度和冲击强度分别达21.5 MPa和10.22 kJ/m2。但当WF添加量增加至40wt%时,WF/HDPE复合材料的拉伸承载端部出现应力集中,阻碍了其内部应变的均匀传递。mAPP阻燃剂加剧了WF与HDPE界面间的脱粘行为,削弱了WF与HDPE之间的机械啮合作用力。当mAPP阻燃剂添加量从10wt%增加至25wt%时,WF/HDPE复合材料开始出现多个分散的高应变区域,全场应变传递出现不规则分布。当mAPP阻燃剂添加量达25wt%时,WF/HDPE复合材料应变分布呈两极化趋势,导致复合材料的拉伸强度和冲击强度分别降低为15.5 MPa和5.49 kJ/m2
填隙补偿对碳纤维/环氧树脂复合材料-铝合金装配结构力学性能的影响
叶鑫, 安鲁陵, 岳烜德, 高国强
2020, 37(9): 2183-2199. doi: 10.13801/j.cnki.fhclxb.20191207.002
摘要:
碳纤维/环氧树脂复合材料和铝合金作为主要的航空材料,在飞机结构中存在着大量装配关系,但受成型工艺方法的限制,两种材料在制造和装配偏差的情况下,构件配合面间会产生装配间隙,当间隙超过一定大小时,需要采取填隙补偿措施。本研究基于实际结构抽象出碳纤维/环氧树脂复合材料-铝合金装配模型,使用装配试验台模拟施加螺栓预紧力,通过应变片实验比较强迫装配及垫片补偿情况下试件局部表面的应变分布,结合三维数字图像相关(3D-DIC)实验测得的试件表面应变场分析变形规律;通过有限元进行层间应力分析,提取内聚力单元各应力分量和损伤情况,研究填隙补偿对碳纤维/环氧树脂复合材料层间应力和局部损伤的影响。结合实验和仿真分析结果表明:强迫装配时,碳纤维/环氧树脂复合材料-铝合金试件主要受弯曲变形和螺栓头挤压的影响,且随着装配间隙的增大,各应变值均增大;垫片补偿在改善弯曲变形引起的应变状态的同时,也使中间贴合部位的螺栓头挤压区应变增大,但总体而言,垫片的引入使碳纤维/环氧树脂复合材料-铝合金试件表面应变分布趋于均匀,降低了碳纤维/环氧树脂复合材料损伤情况,且液体垫片补偿效果略好于可剥垫片。
复合材料货舱地板立柱压溃响应试验
汪洋, 吴志斌, 刘富
2020, 37(9): 2200-2206. doi: 10.13801/j.cnki.fhclxb.20200111.001
摘要:
复合材料已经在民用飞机结构上得到广泛应用,并逐渐应用到主承力结构中,复合材料的脆性特点给飞机的适坠性设计和评估提出了新的挑战。复合材料机身货舱地板支撑立柱作为坠撞过程中的重要吸能元件,对机身结构抗坠撞性能有重要影响。复合材料货舱地板支撑立柱在压溃失效模式下吸收的能量明显多于整体弯曲失效模式。根据民用飞机复合材料货舱地板立柱的设计需求,对不同试件触发模式、高度、截面形式、截面面积等设计参数变化的T700GC碳纤维/环氧树脂复合材料立柱开展准静态和动态压溃试验,得到立柱吸能特性的关键影响参数和设计因子。
基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测
杨凤祥, 陈静芬, 陈善富, 刘志明
2020, 37(9): 2207-2222. doi: 10.13801/j.cnki.fhclxb.20200110.002
摘要:
基于连续损伤力学,建立了同时考虑复合材料剪切非线性效应和损伤累积导致材料属性退化的三维损伤本构模型。模型能够区分纤维损伤、基体损伤和分层损伤不同的失效模式,并定义了相应损伤模式的损伤变量。复合材料层合板层内纤维初始损伤采用最大应力准则判定,基体初始损伤采用三维Puck准则中的基体失效准则判定,分层初始损伤采用三维Hou准则中的分层破坏准则判定,为了计算Puck失效理论中的基体失效断裂面角度,本文提出了分区抛物线法,通过Matlab软件编写计算程序并进行分析。结果表明,与Puck遍历法和分区黄金分割法对比,本文提出的分区抛物线法有效地降低了求解断裂面角度的计算次数,提高了计算效率和计算精度。推导了本构模型的应变驱动显式积分算法以更新应力和解答相关的状态变量,开发了包含数值积分算法的用户自定义子程序VUMAT,并嵌于有限元程序Abaqus v6.14中。通过对力学行为展现显著非线性效应的AS4碳纤维/3501-6环氧树脂复合材料层合板进行渐进失效分析,验证了本文提出的材料本构模型的有效性。结果显示,已提出的模型能够较准确地预测此类复合材料层合板的力学行为及其失效强度,为复合材料构件及其结构设计提供一种有效的分析方法。
金属和陶瓷基复合材料
复合区体积分数对氧化锆增韧氧化铝颗粒/40Cr空间结构复合材料冲击磨损性能的影响
胥长龙, 卢德宏, 唐露, 李明宇
2020, 37(9): 2223-2229. doi: 10.13801/j.cnki.fhclxb.20200220.002
摘要:
为研究空间结构复合材料中复合区体积分数对复合材料冲击磨损性能的影响,采用挤压铸造法制备了不同复合区体积分数(35vol%、50vol%、65vol%)的氧化锆增韧氧化铝颗粒(ZTAP)三维网络增强40Cr钢基复合材料(ZTAP/40Cr空间结构复合材料),经过850℃淬火和460℃回火,在冲击功为1.5 J下进行无磨料冲击磨损实验。结果表明:复合区体积分数为35vol%、50vol%、65vol%的ZTAP/40Cr空间结构复合材料磨损率分别为4.68×10−3 cm3/h、3.40×10−3 cm3/h、1.04×10−3 cm3/h,ZTAP/40Cr复合材料和40Cr钢的磨损率分别为13.41×10−3 cm3/h和79.87×10−3 cm3/h。ZTAP/40Cr空间结构复合材料的耐磨性随复合区体积分数增加而提高。进一步分析表明,ZTAP/40Cr空间结构复合材料的冲击磨损机制包含表面发生的磨粒磨损和黏着磨损,主要是基体黏着和整个表面被犁削及亚表层萌生的疲劳磨损,是由反复冲击过程中产生的ZTAP破碎和ZTAP与40Cr界面开裂导致的材料块状脱落。
泡沫填充蜂窝材料动态力学性能的物质点法模拟
刘平, 王相玉, 黄舟
2020, 37(9): 2230-2239. doi: 10.13801/j.cnki.fhclxb.20191224.001
摘要:
为了研究泡沫填充蜂窝材料(FFH)在动态加载下的力学响应和吸能效果,采用物质点法建立了FFH的细观物质点模型。泡沫细观物质点模型的应力-应变曲线与理论模型和实验结果吻合较好,FFH细观物质点模型的变形失效模式与实验结果一致。研究发现,填充泡沫和蜂窝分别通过塑性变形和屈曲变形吸能,填充泡沫对蜂窝吸能效果增强效应显著。获得了填充泡沫密度和加载应变率对FFH变形损伤和吸能效果的影响。填充泡沫密度增加,FFH动态力学性能提高,吸能总量增加,蜂窝吸能增加。填充泡沫增强了蜂窝的屈曲强度,促进蜂窝抵抗更多的变形。FFH的应力-应变曲线对加载应变率敏感,其吸能效果受加载应变率一定程度的影响,但总量变化不超过15%。吸能总量和组分吸能比例由FFH整体结构决定,与加载应变率无关。
基于高Q腔法测试氮化硅纤维的介电性能
李庆辉, 孔维纳, 李喆, 王少敏, 王绍凯, 顾轶卓, 李敏
2020, 37(9): 2240-2249. doi: 10.13801/j.cnki.fhclxb.20200115.003
摘要:
氮化硅纤维具有优异的耐高温性能和透波能力,是理想的高温透波增强材料。本文对高Q腔法测试陶瓷纤维介电性能的样品制备和测试方法进行了研究和优化。研究发现,介电测试试样中纤维含量应不低于20wt%,含量过低易导致计算所得的纤维介电常数偏低;同时短切纤维的长度主要影响介电测试数据的离散性,由长度不大于1.0 mm的短纤维所制试样质量高,介电测试结果稳定性更佳。对比讨论了Lichtenecker、Bruggeman和Looyenga三种介电混合模型的适用性,最终基于Lichtenecker介电常数对数混合法则计算得到石英纤维的相对介电常数与文献报道数据较一致。分析表明,氮化硅纤维在10 GHz频率下的相对介电常数为4.4,损耗角正切值为0.0005,是优异的低介电高透波材料。同时,表面上浆剂通过改变纤维表面极性特征,对氮化硅纤维介电性能尤其介电损耗产生显著影响。
不同ZrC含量的(C/C)/SiC-ZrC复合材料的抗烧蚀性能
王玲玲, 闫联生, 郭春园, 张宏亮, 王坤杰
2020, 37(9): 2250-2257. doi: 10.13801/j.cnki.fhclxb.20200110.003
摘要:
采用先驱体转化(PIP)法制备了不同ZrC含量的(C/C)/SiC-ZrC复合材料,考察了ZrC含量对复合材料微观结构和抗烧蚀性能的影响。结果表明,氧乙炔烧蚀600 s后,(C/C)/SiC复合材料表面疏松,出现了较大的烧蚀凹坑;而(C/C)/SiC-ZrC复合材料表面相对较致密,被白色氧化物质覆盖,烧蚀率均有所降低。在较低的ZrC含量下,(C/C)/SiC-ZrC复合材料表面形成ZrO2-SiO2二元共熔体系氧化膜,有效抑制氧化性气氛向复合材料内部渗透,同时氧化物不断熔化和挥发,降低了复合材料烧蚀表面的温度;而当ZrC体积分数为12.4vol%时,在烧蚀过程中(C/C)/SiC-ZrC复合材料表面能形成一个ZrO2外层/SiO2内层的双层结构保护膜,ZrO2是一种优异的热障材料,且导热系数较低,使烧蚀过程中烧蚀区域热扩散降低,因此(C/C)/SiC-ZrC复合材料表现为较高的表面温度,但双层氧化膜阻挡有氧气氛进一步进入复合材料内部,使复合材料表现出优异的抗烧蚀性能。