留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海水海砂混凝土中混杂碳-玄武岩纤维筋拉伸性能退化机理及寿命预测

许艾沿 杜运兴 潘柳景泰 朱德举

许艾沿, 杜运兴, 潘柳景泰, 等. 海水海砂混凝土中混杂碳-玄武岩纤维筋拉伸性能退化机理及寿命预测[J]. 复合材料学报, 2024, 41(7): 3695-3706.
引用本文: 许艾沿, 杜运兴, 潘柳景泰, 等. 海水海砂混凝土中混杂碳-玄武岩纤维筋拉伸性能退化机理及寿命预测[J]. 复合材料学报, 2024, 41(7): 3695-3706.
XU Aiyan, DU Yunxing, PAN Liujingtai, et al. Degradation mechanism of tensile properties and life prediction of hybrid carbon/basalt fiber reinforced polymer bars in seawater sea-sand concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3695-3706.
Citation: XU Aiyan, DU Yunxing, PAN Liujingtai, et al. Degradation mechanism of tensile properties and life prediction of hybrid carbon/basalt fiber reinforced polymer bars in seawater sea-sand concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3695-3706.

海水海砂混凝土中混杂碳-玄武岩纤维筋拉伸性能退化机理及寿命预测

基金项目: 国家自然科学基金山东联合基金项目(U1806225)
详细信息
    通讯作者:

    朱德举,博士,教授,博士生导师,研究方向为纤维增强复合材料及其增强混凝土构件 E-mail: dzhu@hnu.edu.cn

  • 中图分类号: TB332

Degradation mechanism of tensile properties and life prediction of hybrid carbon/basalt fiber reinforced polymer bars in seawater sea-sand concrete

Funds: National Natural Science Foundation Shandong joint fund project (U1806225)
  • 摘要: 为了研究海水浸泡下海水海砂混凝土(Seawater sea-sand concrete,SSC)中以环氧树脂为基体的混杂碳-玄武岩纤维复材筋(CF-BF/Epoxy)拉伸性能退化规律,在不同温度(25、40和55℃)下对SSC中的CF-BF/Epoxy进行海水浸泡,周期为60、90和120天,通过拉伸试验对CF-BF/Epoxy在SSC中的拉伸性能进行了研究,并利用SEM和FTIR对其微观结构的变化进行了分析。结果显示,环境温度对CF-BF/Epoxy的拉伸性能有明显影响,在55℃下浸泡120d后,抗拉强度下降了13.84%,弹性模量在3%范围内轻微波动,CF-BF/Epoxy出现伪延性;玄武岩纤维和碳纤维混杂延缓了SSC中OH进一步向CF-BF/Epoxy内部侵蚀,而外层玄武岩纤维区域的树脂水解和树脂-纤维界面退化是CF-BF/Epoxy拉伸性能退化的主要原因。最后基于Arrhenius方程预测,嵌入SSC中的CF-BF/Epoxy的抗拉强度保持率将在584~803天内降至70%。

     

  • 图  1  CF-BF/Epoxy横截面

    Figure  1.  Cross section of CF-BF/Epoxy

    图  2  SSC-FRP试件

    Figure  2.  Specimens of SSC-FRP

    图  3  拉伸性能试验装置

    Figure  3.  Tensile properties test setup

    图  4  SEM观测试样

    Figure  4.  SEM observation sample

    图  5  SSC包裹的CF-BF/Epoxy老化后的表面形貌

    Figure  5.  Surface morphology of CF-BF/Epoxy wrapped by SSC after exposure

    图  6  SSC包裹的CF-BF/Epoxy拉伸破坏形态

    Figure  6.  Tensile failure models of CF-BF/Epoxy wrapped by SSC

    图  7  SSC包裹的CF-BF/Epoxy老化前后应力-应变曲线

    Figure  7.  Stress-strain curves of CF-BF/Epoxy wrapped by SSC before and after aging test

    图  8  SSC包裹的CF-BF/Epoxy的拉伸性能

    Figure  8.  Tensile properties of CF-BF/Epoxy wrapped by SSC

    图  9  SSC包裹的CF-BF/Epoxy在不同老化环境下的FTIR光谱

    Figure  9.  FTIR spectra of CF-BF/Epoxy wrapped by SSC under different aging conditions

    图  10  SSC包裹的CF-BF/Epoxy SEM观测点位

    Figure  10.  SEM observation positions of CF-BF/Epoxy specimens wrapped by SSC

    图  11  SSC包裹的CF-BF/Epoxy SEM图像

    Figure  11.  SEM images of the CF-BF/Epoxy wrapped by the SSC

    图  12  SSC包裹的CF-BF/Epoxy寿命预测拟合曲线

    Figure  12.  Fitted curves of CF-BF/Epoxy embedded in SSC for life prediction

    图  13  预测CF-BF/Epoxy在指定城市长期拉伸强度的主曲线

    Figure  13.  Master curves of the predicted long-term tensile strength of HFRP bars in given cities

    表  1  海水海砂混凝土配合比

    Table  1.   Mixing ratio of seawater sea sand concrete

    Raw materials Cement Artificial seawater Coarse aggregate Sea-sand Water reducer
    Mass/(kg·m−3) 370 185 1113 682 0.111
    Note:Water reducer agent in kg.
    下载: 导出CSV

    表  2  人工海水的化学成分

    Table  2.   Chemical composition of artificial seawater

    Composition NaCl MgCl2 Na2SO4 CaCl2 KCl NaHCO3
    Concentration/(g·L−1) 24.53 5.20 4.09 1.16 0.695 0.201
    下载: 导出CSV

    表  3  嵌入SSC中CF-BF/Epoxy的加速老化试验

    Table  3.   Accelerated aging test of CF-BF/Epoxy embedded in SSC

    Types of FRP barsTest environmentExposure temperature/℃Exposure period/daysNumber of interlaminar
    shear specimens
    CF-BF/EpoxyArtificial seawater immersion2560,90,1205
    4060,90,1205
    5560,90,1205
    下载: 导出CSV

    表  4  CF-BF/Epoxy拉伸性能测试结果

    Table  4.   Test results of tensile properties of CF-BF/Epoxy

    Specimen of FRP bars Tensile strength Elastic modulus Ultimate strain/%
    Average /MPa Retention /% CV/% Average /GPa Retention /% CV/% Average Retention /%
    HFRP 2437.41 100 1.2 146.87 100 3.3 1.66 100
    HT25 D60 2390.00 98.05 1.3 144.84 98.62 1.6 1.65 99.40
    HT25 D90 2278.19 93.47 3.6 144.76 98.56 3.4 1.57 94.81
    HT25 D120 2260.69 92.75 4.4 143.18 97.49 1.6 1.58 95.12
    HT40 D60 2373.33 97.37 4.7 142.49 97.02 3.2 1.67 99.34
    HT40 D90 2267.46 93.03 6.6 143.22 97.51 2.0 1.58 95.37
    HT40 D120 2217.14 90.96 5.1 142.52 97.04 2.2 1.56 93.72
    HT55 D60 2360.00 96.82 1.5 143.60 97.78 2.3 1.64 99.00
    HT55 D90 2186.67 89.71 4.2 145.03 98.75 3.9 1.51 90.83
    HT55 D120 2100.00 86.16 1.7 145.13 98.82 1.0 1.45 87.17
    Note: HFRP denotes unaged CF-BF/Epoxy specimens; HTxDy denotes CF-BF/Epoxy specimens immersed at x°C for y days.
    下载: 导出CSV

    表  5  CF-BF/Epoxy在SSC中寿命预测的时移因子(FTS)参数

    Table  5.   FTS parameters for life prediction of CF-BF/Epoxy wrapped by SSC

    Types of FRP bars Solution temperature/℃ FTS
    Qingdao(12.3℃) Fuzhou(20.1℃) Haikou(23.8℃)
    CF-BF/Epoxy 25 1.33 1.11 1.03
    40 1.81 1.51 1.39
    55 2.39 2.00 1.84
    下载: 导出CSV

    表  6  不同文献中FRP筋拉伸试验结果和寿命预测结果

    Table  6.   Tensile test results and life prediction of FRP bars in different literatures

    References Parameters of
    FRP bar
    Exposure condition Tensile test results Life prediction
    Duration/
    Days
    Tensile strength retention/% Tensile strength retention/% Service-life/years Location
    This study 8 mm CF-BF/Epoxy SSC(pH=13.3) 120(25℃) 92.75 70 2.6 Qingdao(12.3℃)
    90(40℃) 93.03 70 1.8 Fuzhou(20.1℃)
    90(55℃) 89.71 70 1.6 Haikou(23.8℃)
    Yi[15] 8 mmBFRP SMSSC(pH=12.5) 180(25℃) 86.88 70 5.1 Qingdao(12.3℃)
    90(40℃) 75.42 70 2.4 Fuzhou(20.1℃)
    90(55℃) 60.81 70 1.7 Haikou(23.8℃)
    Wang[16] 6 mmBFRP Simulated SSC pore
    solutions(pH=13.4)
    63(32℃) 92.7 70 20.4 Hall's Harbor Quay (7.6℃)
    63(40℃) 81.7
    63(55℃) 26 70 14.6 Waterloo Creek Bridge(9.9℃)
    Natural environments - 91.6 5 Hall's Harbor Quay (7.6℃)
    86.4 6 Waterloo Creek Bridge(9.9℃)
    Mufti[37] GFRP(E-glass in a vinylester matrix) Natural environments - No significant degradation 5~8 Halls Harbor Wharf
    Joffre Bridge
    Chatham Bridge
    Growchild Trail Bridge
    Waterloo Greek Bridge
    下载: 导出CSV
  • [1] XIAO J, NANNI C Q A, ZHANG K. Use of sea-sand and seawater in concrete construction: current status and future opportunities[J]. Construct Build Mater 2017, 155: 1101–11.
    [2] WANG Z, ZHAO X L, XIAN G, et al. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials, 2017, 139: 467-89. doi: 10.1016/j.conbuildmat.2017.02.038
    [3] TURCO V, SECONDIN S, MORBIN A, et al. Flexural and shear strengthening of un-reinforced masonry with FRP bars[J]. Composites Science and Technology, 2006, 66(2): 289-96. doi: 10.1016/j.compscitech.2005.04.042
    [4] SHI J W, CAO W H, CHEN L, et al. Durability of wet lay-up BFRP single-lap joints subjected to freeze–thaw cycling[J]. Construction and Building Materials, 2020, 238: 117664. doi: 10.1016/j.conbuildmat.2019.117664
    [5] 高婧, 范凌云. CFRP筋与海水海砂混凝土粘结性能试验与机制分析[J]. 复合材料学报, 2022, 39(03): 1194-204. doi: 10.13801/j.cnki.fhclxb.20210512.001

    GAO Jing, FAN Lingyun. Experiment on bond performance between CFRP bar and seawater sea sand concrete and its working mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(03): 1194-204(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210512.001
    [6] SWOLFS Y, GORBATIKH L, VERPOEST I. Fibre hybridisation in polymer composites: A review[J]. Composites Part A:Applied Science and Manufacturing, 2014, 67: 181-200. doi: 10.1016/j.compositesa.2014.08.027
    [7] SWOLFS Y, VERPOEST I, GORBATIKH L. Maximising the hybrid effect in unidirectional hybrid composites[J]. Materials & Design, 2016, 93: 39-45.
    [8] JALALVAND M, CZéL G, WISNOM M R. Parametric study of failure mechanisms and optimal configurations of pseudo-ductile thin-ply UD hybrid composites[J]. Composites Part A:Applied Science and Manufacturing, 2015, 74: 123-31. doi: 10.1016/j.compositesa.2015.04.001
    [9] CZéL G, JALALVAND M, WISNOM M R, et al. Design and characterisation of high performance, pseudo-ductile all-carbon/epoxy unidirectional hybrid composites[J]. Composites Part B:Engineering, 2017, 111: 348-56. doi: 10.1016/j.compositesb.2016.11.049
    [10] 曹升虎, 吴智深, 马凯, 等. 混杂碳纤维/玄武岩纤维塑料筋的张拉力学性能[J]. 玻璃钢/复合材料, 2014, 245(08): 83-87.

    CAO Shenghu, WU Zhishen, MA Kai, et al. Tensile Properties of hybrid carbon fiber/basalt fiber plastic reinforcement[J]. Glass fiber Reinforced plastic/Composite Materials, 2014, 245(08): 83-87(in Chinese).
    [11] PROTCHENKO K, ZAYOUD F, URBANSKI M, et al. Tensile and Shear Testing of Basalt Fiber Reinforced Polymer (BFRP) and Hybrid Basalt/Carbon Fiber Reinforced Polymer (HFRP) Bars[J]. Materials (Basel), 2020, 13(24): 5839. doi: 10.3390/ma13245839
    [12] GUO F, AL-SAADI S, SINGH RAMAN R K, et al. Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment[J]. Corrosion Science, 2018, 141: 1-13. doi: 10.1016/j.corsci.2018.06.022
    [13] 郝志豪, 戴建国, 王召, 等. GFRP筋的拉伸性能劣化对其与海水海砂混凝土粘结性能的影响[J]. 复合材料学报, 2023, 41: 1-11. doi: 10.13801/j.cnki.fhclxb.20230523.001

    HAO Zhihao, DAI Jianguo, WANG Zhao, et al. Effect of tensile performance degradation of GFRP bars on their bond performance with seawater sea-sand concrete[J]. Acta Materiae Compositae Sinica, 2023, 41: 1-11(in Chinese). doi: 10.13801/j.cnki.fhclxb.20230523.001
    [14] LU C, NI M, CHU T, et al. Comparative Investigation on Tensile Performance of FRP Bars after Exposure to Water, Seawater, and Alkaline Solutions[J]. Journal of Materials in Civil Engineering, 2020, 32(7): 04020170. doi: 10.1061/(ASCE)MT.1943-5533.0003243
    [15] YI Y, ZHU D, RAHMAN M Z, et al. Tensile properties deterioration of BFRP bars in simulated pore solution and real seawater sea sand concrete environment with varying alkalinities[J]. Composites Part B:Engineering, 2022, 243: 110115. doi: 10.1016/j.compositesb.2022.110115
    [16] 王自柯. FRP筋在模拟海水—海砂混凝土孔溶液浸泡下的耐久性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Zike. Study on the durability performances of fiber reinforced polymer (FRP) bars exposed to simulated seawater and sea sand concerte pore solution [D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
    [17] 周平, 白艳博, 李承高, 等. 模拟海水-海砂混凝土环境下连续玻璃纤维增强聚丙烯复合材料杆层间剪切性能的演化[J]. 复合材料学报, 2024, 41(1): 313-322. doi: 10.13801/j.cnki.fhclxb.20230516.003

    ZHOU Ping, BAI Yanbo, LI Chenggao, et al. Interlaminar shear behavior of glass-fibre reinforced polypropylene rod under seawater and sea sand concrete simulation environment[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 313-322(in Chinese). doi: 10.13801/j.cnki.fhclxb.20230516.003
    [18] PAN Y, YAN D. Study on the durability of GFRP bars and carbon/glass hybrid fiber reinforced polymer (HFRP) bars aged in alkaline solution[J]. Composite Structures, 2021, 261.
    [19] WANG X, WU G, WU Z, et al. Evaluation of prestressed basalt fiber and hybrid fiber reinforced polymer tendons under marine environment[J]. Materials & Design, 2014, 64: 721-8.
    [20] 耿健智, 朱德举, 郭帅成, 等. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(03): 152-9. doi: 10.11896/cldb.21010189

    GENG Jianzhi, ZHU Deju, GUO Shuaicheng, et al. Experimental Study on Mechanical Properties of Seawater Sea-sand Concrete with Sea-sands from Different Regions[J]. Materials Reports B, 2022, 36(03): 152-9(in Chinese). doi: 10.11896/cldb.21010189
    [21] ASTM. Standard practice for the preparation of substitute ocean water: ASTM D1141–98(2013)[S]. West Conshohocken, PA, 2013.
    [22] ACI. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars: ACI 440.1R-15[S]. American Concrete Institute, 2015.
    [23] HARRIS H G, SOMBOONSONG W. New Ductile Hybrid FRP Reinforcing Bar for Concrete Structures[J]. Journal of Composites for Construction, 1988, 2(1): 28-37.
    [24] GAO D, ZHANG Y, WEN F, et al. Design method and experiment verification for hybrid fiber reinforced polymer bars with both tensile ductility and different strength grades[J]. Journal of Building Engineering, 2022, 46: 103723. doi: 10.1016/j.jobe.2021.103723
    [25] SERBESCU A, GUADAGNINI M, PILAKOUTAS K. Mechanical Characterization of Basalt FRP Rebars and Long-Term Strength Predictive Model[J]. Journal of Composites for Construction, 2015, 19(2): 04014037. doi: 10.1061/(ASCE)CC.1943-5614.0000497
    [26] ROBERT M, BENMOKRANE B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars[J]. Construction and Building Materials, 2013, 38: 274-84. doi: 10.1016/j.conbuildmat.2012.08.021
    [27] KIM H-Y, PARK Y-H, YOU Y-J, et al. Short-term durability test for GFRP rods under various environmental conditions[J]. Composite Structures, 2008, 83(1): 37-47. doi: 10.1016/j.compstruct.2007.03.005
    [28] KAMAL A S M, BOULFIZA M. Durability of GFRP Rebars in Simulated Concrete Solutions under Accelerated Aging Conditions[J]. Journal of Composites for Construction, 2011, 15(4): 473-81. doi: 10.1061/(ASCE)CC.1943-5614.0000168
    [29] YVETTE N, MARéCHAL Y, MERMILLIOD N. Epoxy−Amine Reticulates Observed by Infrared Spectrometry. I: Hydration Process and Interaction Configurations of Embedded H2O Molecules[J]. The Journal of Physical Chemistry B, 1999, 103(24): 4979-4985. doi: 10.1021/jp984809y
    [30] WIMONLAK N, KOENIG J L. Interfacial behavior of epoxy/E-glass fiber composites under wet-dry cycles by fourier transform infrared microspectroscopy[J]. Polymer composites, 1999, 20(1): 38-47. doi: 10.1002/pc.10333
    [31] YANG Y, XIAN G, LI H, et al. Thermal aging of an anhydride-cured epoxy resin[J]. Polymer Degradation and Stability, 2015, 118: 111-9. doi: 10.1016/j.polymdegradstab.2015.04.017
    [32] GEORGE S. Infrared and Raman characteristic group frequencies: tables and charts[J]. John Wiley & Sons, 2004.
    [33] DAVALOS J F, CHEN Y, RAY I. Long-term durability prediction models for GFRP bars in concrete environment[J]. Journal of Composite Materials, 2011, 46(16): 1899-914.
    [34] CHEN Y, DAVALOS J F, RAY I. Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests[J]. Journal of composites for construction, 2006, 10(4): 279-286. doi: 10.1061/(ASCE)1090-0268(2006)10:4(279)
    [35] ROBERT M, COUSIN P, BENMOKRANE B. Durability of GFRP reinforcing bars embedded in moist concrete[J]. Journal of Composites for Construction, 2009, 13(2): 66-73. doi: 10.1061/(ASCE)1090-0268(2009)13:2(66)
    [36] WU G, DONG Z-Q, WANG X, et al. Prediction of Long-Term Performance and Durability of BFRP Bars under the Combined Effect of Sustained Load and Corrosive Solutions[J]. Journal of Composites for Construction, 2015, 19(3): 04014058. doi: 10.1061/(ASCE)CC.1943-5614.0000517
    [37] MUFTI A, BANTHIA N, BENMOKRANE B, et al. Durability of GFRP Composite Rods[J]. Concrete International, 2007, 29(02): 37-42.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  95
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2023-11-13
  • 录用日期:  2023-11-27
  • 网络出版日期:  2023-12-09
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回