留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性阻尼金属螺旋丝网夹芯结构连接工艺及力学特性

王珊珊 魏雨函 薛新 吴章斌 白鸿柏

王珊珊, 魏雨函, 薛新, 等. 弹性阻尼金属螺旋丝网夹芯结构连接工艺及力学特性[J]. 复合材料学报, 2022, 39(3): 1308-1321. doi: 10.13801/j.cnki.fhclxb.20210423.002
引用本文: 王珊珊, 魏雨函, 薛新, 等. 弹性阻尼金属螺旋丝网夹芯结构连接工艺及力学特性[J]. 复合材料学报, 2022, 39(3): 1308-1321. doi: 10.13801/j.cnki.fhclxb.20210423.002
WANG Shanshan, WEI Yuhan, XUE Xin, et al. Connection technology and mechanical properties of sandwich structure with the core of elastic damping metal spiral wire mesh[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1308-1321. doi: 10.13801/j.cnki.fhclxb.20210423.002
Citation: WANG Shanshan, WEI Yuhan, XUE Xin, et al. Connection technology and mechanical properties of sandwich structure with the core of elastic damping metal spiral wire mesh[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1308-1321. doi: 10.13801/j.cnki.fhclxb.20210423.002

弹性阻尼金属螺旋丝网夹芯结构连接工艺及力学特性

doi: 10.13801/j.cnki.fhclxb.20210423.002
基金项目: 国家自然科学基金(51705080)
详细信息
    通讯作者:

    吴章斌,副教授,硕士生导师,研究方向为高性能金属复合材料制备工艺及性能优化  E-mail:wzb@fzu.edu.cn

  • 中图分类号: TB331

Connection technology and mechanical properties of sandwich structure with the core of elastic damping metal spiral wire mesh

  • 摘要: 针对弹性阻尼螺旋金属丝网夹芯结构界面连接性能不明确的问题,分别采用真空钎焊和胶结两种典型连接工艺,进行了面内压缩和拉伸剪切力学性能试验,结合SEM和EDS等材料微观表征方法,展开夹芯结构界面结合的物理机制和力学特性的研究。研究结果表明:钎焊连接界面相对胶结更均匀连续,钎料中Ni、Si元素与芯材、面板中的Fe、Cr元素扩散现象明显,形成良好的冶金结合。在压缩载荷作用下,钎焊夹芯板和胶结夹芯板的损耗因子最高分别达到了0.194和0.128,两种方式制备的夹芯板都具有较大的能量耗散能力。钎焊和胶结夹芯板的拉伸剪切载荷峰值分别达到了2 589 N和1 302 N,前者峰值载荷随芯材密度的增加而增加,而后者却与之相反;两种工艺在拉伸剪切过程中的失效破坏形式明显不同,胶结表现为面板与芯材的脱粘失效,钎焊主要发生芯材金属丝网的裂纹扩展和断裂失效,未发生面/芯分离。本研究对金属多孔夹芯结构的连接和力学性能分析具有一定的理论和应用指导意义。

     

  • 图  1  芯材金属螺旋丝网结构及细观特征

    Figure  1.  Structure and microscopic characteristics of the core metal spiral wire mesh

    图  2  金属螺旋丝网的制备:(a)金属丝;(b)螺旋卷;(c)毛坯;(d)螺旋丝网制品

    Figure  2.  Preparation process of metal spiral wire mesh: (a) Metal wire; (b) Spiral coil; (c) Blank; (d) Spiral wire mesh product

    图  3  冲压设备和模具结构

    Figure  3.  Stamping equipment and die structure

    图  4  真空钎焊焊接设备及焊接参数

    Figure  4.  Vacuum brazing equipment and welding parameters

    图  5  WDW-20T型微控电子万能试验机

    Figure  5.  WDW-20T micro-control electronic universal testing machine

    图  6  AG-Xplus高速电子材料试验机

    Figure  6.  AG-Xplus high-speed electronic material testing machine

    图  7  金属螺旋丝网夹芯结构面内压缩滞回曲线

    Figure  7.  Typical hysteresis curve of metal spiral wire mesh sandwich structure during in-plane compression

    ΔW—Dissipated energy in one cycle; U—Maximum elastic potential energy; η—Loss factor; K—Mean stiffness; Fmax—Maximum force; X—Maximum displacement

    图  8  不同密度的金属螺旋丝网夹芯板在剪切拉伸试验过程中的载荷-位移曲线

    Figure  8.  Load-displacement curves of the metal spiral wire mesh sandwich panels with different densities by tensile shear test

    图  9  金属螺旋丝网夹芯板在剪切拉伸试验过程中的峰值载荷和耗能

    Figure  9.  Peak load and energy consumption of metal spiral wire mesh sandwich panels during shear tensile test

    图  10  钎焊金属螺旋丝网夹芯板的界面微观形貌和元素

    Figure  10.  Interface micromorphology and elements of brazed metal spiral wire mesh sandwich panel

    图  11  钎焊金属螺旋丝网夹芯板的界面元素扩散示意图

    Figure  11.  Schematic diagram of interface element diffusion of brazed metal spiral wire mesh sandwich panel

    图  12  胶结金属螺旋丝网夹芯板界面微观形貌

    Figure  12.  Microscopic morphology of the interface of cemented metal spiral wire mesh sandwich panel

    图  13  钎焊金属螺旋丝网夹芯板剪切拉伸试验的失效过程

    Figure  13.  Failure process of brazed metal spiral wire mesh sandwich panel in shear tensile test

    图  14  金属螺旋丝网拉伸滑移方式示意图

    Figure  14.  Schematic diagram of the sliding modes of metal spiral wire mesh during stretching-shearing

    图  15  钎焊金属螺旋丝网夹芯板在剪切拉伸过程中的失效形貌

    Figure  15.  Failure morphologies of brazed metal spiral wire mesh sandwich panel during shearing and stretching process

    图  16  钎焊金属螺旋丝网夹芯板芯材金属丝断口形貌

    Figure  16.  Fracture morphology of core material wire of brazed metal spiral wire mesh sandwich panel

    图  17  金属丝网压缩变形滑动方式

    Figure  17.  Compression deformation sliding modes of metal wire mesh

    图  18  不同芯材厚度金属螺旋丝网复合夹芯板滞回曲线

    Figure  18.  Hysteresis curves of metal spiral wire mesh composite sandwich panels with different core material thicknesses

    图  19  不同芯材厚度金属螺旋丝网复合夹芯板的损耗因子、平均静刚度、能量耗散

    Figure  19.  Loss factor, average static stiffness and energy dissipation of metal spiral wire mesh composite sandwich panels with different core material thicknesses

    图  20  不同制备工艺下金属螺旋丝网复合夹芯板的损耗因子(a)、平均静刚度(b)、能量耗散(c)

    Figure  20.  Performance parameters of metal spiral wire mesh composite sandwich panels under different connection processes: (a) Loss factor; (b) Average static stiffness; (c) Energy dissipation

    图  21  芯材金属螺旋丝网面内压缩后的微观损伤

    Figure  21.  Microscopic damage of core metal spiral wire mesh after in-plane compression

    表  1  SUS304不锈钢原材料的性能参数

    Table  1.   Performance parameters of SUS304 material

    ElementFeNiCSiMnSPCr
    Content/wt% ≥71 8.01 ≤0.08 ≤1.00 ≤2.00 ≤0.03 ≤0.035 17.12
    Property Young′s modulus/GPa Density/(g·cm−3) Tensile strength/MPa Yield strength/MPa
    Value 199 7.93 680 340
    下载: 导出CSV

    表  2  JL101金属胶的性能参数

    Table  2.   Performance parameters of JL101 metal glue

    ColourDensity/(g·cm−3)Compressive strength/MPaTensile strength/MPa
    Cast iron 1.64 87.6 26.8
    Shear strength/MPa Bending strength/MPa Hardness(Shore D) Working temperature/℃
    19.8 50 75 −60-300
    下载: 导出CSV

    表  3  BNi2钎料的化学成分

    Table  3.   Chemical composition of solder BNi2

    CompositionNiCrSiBFeCoCPW
    Content/wt% ≥84 6-8 4-5 2.75-3.5 2.5-3.5 ≤0.1 ≤0.06 ≤0.02 ≤0.02
    Property Solid phase line/℃ Liquidus line/℃
    Value 970 1000
    下载: 导出CSV

    表  4  金属螺旋丝网复合夹芯板面内压缩试验参数

    Table  4.   In-plane compression test parameters of sandwich structure with the core of elastic damping metal spiral wire mesh

    NameLength/mmWidth/mmDensity/(g·cm−3)Thickness/mmConnection
    C1-1 60 60 3.0 3 Brazing
    C1-2 60 60 3.0 5 Brazing
    C1-3 60 60 3.0 7 Brazing
    C1-4 60 60 3.0 9 Brazing
    C2-1 60 60 3.0 3 Adhesive
    C2-2 60 60 3.0 5 Adhesive
    C2-3 60 60 3.0 7 Adhesive
    C2-4 60 60 3.0 9 Adhesive
    下载: 导出CSV

    表  5  金属螺旋丝网复合夹芯板面内剪切拉伸试验参数

    Table  5.   In-plane shear tensile test parameters of sandwich structure with the core of elastic damping metal spiral wire mesh

    NameLength/mmWidth/mmDensity/(g·cm−3)Thickness/mmConnection
    S1-1 140 60 2.0 5 Brazing
    S1-2 140 60 2.5 5 Brazing
    S1-3 140 60 3.0 5 Brazing
    S1-4 140 60 3.5 5 Brazing
    S2-1 140 60 2.0 5 Adhesive
    S2-2 140 60 2.5 5 Adhesive
    S2-3 140 60 3.0 5 Adhesive
    S2-4 140 60 3.5 5 Adhesive
    下载: 导出CSV
  • [1] 张大义, 夏颖, 张启成, 等. 金属橡胶力学性能研究进展与展望[J]. 航空动力学报, 2018, 33(6):1432-1445.

    ZHANG Dayi, XIA Ying, ZHANG Qicheng, et al. Research progress and prospects of the mechanical properties of metal rubber[J]. Journal of Aeronautical Dynamics,2018,33(6):1432-1445(in Chinese).
    [2] LU C Z, LI J, ZHOU B, et al. Experimental investigation of stiffness characteristics and damping properties of a metallic rubber material[J]. Mechanics of Composite Materials,2017,53(4):541-550. doi: 10.1007/s11029-017-9684-6
    [3] 卢成壮, 李静媛, 周邦阳, 等. 金属丝特性对金属橡胶疲劳性能的影响[J]. 振动与冲击, 2018, 37(24):137-142.

    LU Chengzhuang, LI Jingyuan, ZHOU Bangyang, et al. The effect of metal wire properties on the fatigue properties of metal rubber[J]. Journal of Vibration and Shock,2018,37(24):137-142(in Chinese).
    [4] 黄凯, 白鸿柏, 路纯红, 等. 复杂构型金属橡胶毛坯铺设路径规划[J]. 航空动力学报, 2018, 33(7):1575-1583.

    HUANG Kai, BAI Hongbai, LU Chunhong, et al. Path planning for the laying of metal rubber blanks with complex configurations[J]. Journal of Aeronautics and Dynamics,2018,33(7):1575-1583(in Chinese).
    [5] ZHANG W, XUE X, BAI H. Mechanical and electrical properties of Cu-Steel bimetallic porous composite with a double-helix entangled structure[J]. Composite Structures,2021,255:112886.
    [6] WANG Y J, ZHANG Z J, XUE X M, et al. Experimental investigation on enhanced mechanical and damping performance of corrugated structure with metal rubber[J]. Thin-Walled Structures,2020,154:106816. doi: 10.1016/j.tws.2020.106816
    [7] 王志华, 李世强, 李鑫, 等. 轻质多孔金属及其夹芯结构力学行为的研究进展[J]. 太原理工大学学报, 2017, 48(3):492-503.

    WANG Zhihua, LI Shiqiang, LI Xin, et al. Research progress on the mechanical behavior of lightweight porous metals and their sandwich structures[J]. Journal of Taiyuan University of Technology,2017,48(3):492-503(in Chinese).
    [8] XIN Y, YAN H, YANG S, et al. Experimental study on the indentation of epoxy resin-aluminum honeycomb composite sandwich panel[J]. Mechanics of Advanced Materials and Structures,2019,28(12):1-15.
    [9] KAVERMANN S W, BHATTACHARYYA D. Experimental investigation of the static behaviour of a corrugated plywood sandwich core[J]. Composite Structures,2019,207:836-844. doi: 10.1016/j.compstruct.2018.09.094
    [10] KASIRAJAN S, ENTHIL KS, PANDIYARAJAN R. Experimental investigation of basalt/s-glass/epoxy/PVC H-130 hybrid sandwich composite[J]. Journal of the Chinese Institute of Engineers,2020,43(8):725-733. doi: 10.1080/02533839.2020.1771211
    [11] LI H, HU Y, FU X, et al. Effect of adhesive quantity on failure behavior and mechanical properties of fiber metal laminates based on the aluminum-lithium alloy[J]. Composite Structures,2016,152:687-692. doi: 10.1016/j.compstruct.2016.05.098
    [12] ZHANG P, CHENG Y, LIU J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading[J]. Marine Structures,2015,40:225-246. doi: 10.1016/j.marstruc.2014.11.007
    [13] 张军, 程和法, 黄笑梅, 等. 钎焊方法制备泡沫铝/铝夹芯板的组织及性能[J]. 焊接学报, 2019, 40(8):144-149.

    ZHANG Jun, CHENG Hefa, HUANG Xiaomei, et al. Microstructure and properties of aluminum foam/aluminum sandwich panel prepared by brazing method[J]. Transactions of the China Welding Institution,2019,40(8):144-149(in Chinese).
    [14] HANGAI Y, NAKANO Y, KOYAMA S, et al. Fabrication of aluminum tubes filled with aluminum alloy foam by friction welding[J]. Materials,2015,8(10):7180-7190. doi: 10.3390/ma8105373
    [15] LIN H, LUO H, HUANG W, et al. Diffusion bonding in fabrication of aluminum foam sandwich panels[J]. Journal of Materials Processing Technology,2016,230:35-41. doi: 10.1016/j.jmatprotec.2015.10.034
    [16] 张军, 程和法, 秦晓雄, 等. 钎焊工艺制备泡沫铝/铝夹芯板及其力学行为研究[J]. 材料研究与应用, 2017, 11(3):167-171. doi: 10.3969/j.issn.1673-9981.2017.03.006

    ZHANG Jun, CHENG Hefa, QIN Xiaoxiong, et al. Preparation of foamed aluminum/aluminum sandwich panel by brazing process and its mechanical behavior[J]. Materials Research and Application,2017,11(3):167-171(in Chinese). doi: 10.3969/j.issn.1673-9981.2017.03.006
    [17] 栾旭, 梁军, 王超, 等. 金属蜂窝夹芯板疲劳行为的试验研究[C]. 上海: China SAMPE' 2008国际学术研讨会, 2008.

    LUAN Xu, LIANG Jun, WANG Chao, et al. Experimental research on fatigue behavior of metal honeycomb sandwich panels[C]. Shanghai: China SAMPE' 2008 International Symposium, 2008(in Chinese).
    [18] 乔吉超, 奚正平, 汤慧萍, 等. 金属纤维多孔材料的压缩行为[J]. 稀有金属材料与工程, 2008, 37(12):2173-2176. doi: 10.3321/j.issn:1002-185X.2008.12.024

    QIAO Jichao, XI Zhengping, TANG Huiping, et al. Compression behavior of porous metal fiber materials[J]. Rare Metal Materials and Engineering,2008,37(12):2173-2176(in Chinese). doi: 10.3321/j.issn:1002-185X.2008.12.024
    [19] 王宇, 胡正飞, 姚骋, 等. 液态扩散焊制备泡沫铝夹芯板及其疲劳行为[J]. 复合材料学报, 2018, 35(6):1652-1660.

    WANG Yu, HU Zhengfei, YAO Cheng, et al. Preparation and fatigue behavior of aluminum foam sandwich panel by liquid diffusion welding[J]. Journal of Composite Materials,2018,35(6):1652-1660(in Chinese).
    [20] ZHOU Y, XU Y, LIU H, et al. Debonding identification of Nomex honeycomb sandwich structures based on the increased vibration amplitude of debonded skin[J]. Composites Part B: Engineering,2020,200:108233. doi: 10.1016/j.compositesb.2020.108233
    [21] MARKAKI A E, CLYNE T W. Mechanics of thin ultra-light stainless steel sandwich sheet material[J]. Acta Materialia,2003,51(5):1341-1350.
    [22] MARKAKI A E, CLYNE T W. Mechanics of thin ultra-light stainless steel sandwich sheet material[J]. Acta Materialia,2003,51(5):1351-1357. doi: 10.1016/S1359-6454(02)00529-3
    [23] 白鸿柏. 金属橡胶材料及工程应用[M]. 北京: 科学出版社, 2014.

    BAI Hongbai. Metal rubber materials and engineering applications[M]. Beijing: Science Press, 2014.
    [24] MA Y, ZHANG Q, WANG Y, et al. Topology and mechanics of metal rubber via X-ray tomography[J]. Materials & Design,2019,181:108067.
    [25] REN Z, SHEN L, HUANG Z, et al. Study on multi-point random contact characteristics of metal rubber spiral mesh structure[J]. IEEE Access,2019,7:132694-132710. doi: 10.1109/ACCESS.2019.2935818
    [26] HU J, DU Q, GAO J, et al. Compressive mechanical behavior of multiple wire metal rubber[J]. Materials & Design,2018,140:231-240.
    [27] MA Y, ZHANG Q, ZHANG D, et al. Size-dependent mechanical behavior and boundary layer effects in entangled metallic wire material systems[J]. Journal of Materials Science,2017,52(7):3741-3756.
  • 加载中
图(21) / 表(5)
计量
  • 文章访问数:  800
  • HTML全文浏览量:  468
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 修回日期:  2021-04-10
  • 录用日期:  2021-04-20
  • 网络出版日期:  2021-04-23
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回