留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene基复合材料的制备及其在钠、钾离子电池中的应用

刘纳 王雅婷 修石健 李仁哲 权波

刘纳, 王雅婷, 修石健, 等. MXene基复合材料的制备及其在钠、钾离子电池中的应用[J]. 复合材料学报, 2023, 42(0): 1-14.
引用本文: 刘纳, 王雅婷, 修石健, 等. MXene基复合材料的制备及其在钠、钾离子电池中的应用[J]. 复合材料学报, 2023, 42(0): 1-14.
LIU Na, WANG Ya-ting, XIU Shi-jian, et al. Preparation of MXene-based composites and their applications in sodium and potassium-ion batteries[J]. Acta Materiae Compositae Sinica.
Citation: LIU Na, WANG Ya-ting, XIU Shi-jian, et al. Preparation of MXene-based composites and their applications in sodium and potassium-ion batteries[J]. Acta Materiae Compositae Sinica.

MXene基复合材料的制备及其在钠、钾离子电池中的应用

基金项目: 吉林省教育厅科学技术项目(JJKH20191122KJ)
详细信息
    通讯作者:

    权波,博士,教授,研究方向为无机材料、功能复合材料 E-mail: quanbo@ybu.edu.cn

  • 中图分类号: TM912;TB30;TB332

Preparation of MXene-based composites and their applications in sodium and potassium-ion batteries

Funds: Science and Technology Project of Jilin Provincial Department of Education (JJKH20191122KJ)
  • 摘要: MXene及其复合材料在二次电池领域得到了广泛的应用。MXene作为一种新型二维过渡金属碳化物层状材料,它的电导率极高,比表面积极大,层状结构独特,表面活性位点众多,离子传输路径极短,力学性能卓越,因此,MXene已经被广泛地应用于储能、吸附、催化等各个领域。以MXene基构建复合材料不仅可以提高导电性,缓解体积膨胀,反过来还可以抑制MXene堆叠,获得更好的电化学性能。本文综述了MXene含氟和无氟的合成方法,分析了MXene及其复合材料在钠、钾离子电池中的应用及性能。最后,阐述了MXene及其复合材料的挑战和前景。

     

  • 图  1  (a) Ti3C2Tx 与HF反应后Al原子被OH取代并在甲醇中超声处理后氢键断裂和纳米片分离示意图[20]。(b) HF处理后样品的结构表征图像[20]。(c)从Ti3AlC2到Ti3C2Tx的蚀刻示意图[23]。(d) Hf蚀刻Ti3C2Tx的结构表征图[23]。(e)用HF或LiF-HCL刻蚀Ti3AlC2和Ti3C2Tx的XRD谱图[23]

    Figure  1.  (a) Schematic diagram of hydrogen bond cleavage and nanosheet separation after the reaction of Ti3C2Tx with HF after the Al atom is replaced by OH and sonicated in methanol[20]. (b) Structural characterization image of the HF-treated sample[20]. (c) Schematic diagram of etching from Ti3AlC2 to Ti3C2Tx[23]. (d) Structural characterization of Hf-etched Ti3C2Tx[23]. (e) XRD spectra of Ti3AlC2 and Ti3C2Tx etched with HF or LiF-HCL[23].

    图  2  (a) Ti3AlC2与NaOH水溶液在不同条件下的反应[35]。(b) Ti4AlN3在550℃氩气条件下进行熔盐处理合成Ti4N3Tx的示意图,然后用TBAOH将多层MXene分层[41]

    Figure  2.  (a) The reaction between Ti3AlC2 and NaOH water solution under different conditions[35]. (b) Schematic illustration of the synthesis of Ti4N3Tx by molten salt treatment of Ti4AlN3 at 550°C under Ar, followed by delamination of the multilayered MXene by TBAOH[41]

    图  3  (a)中空MXene球体和三维大孔MXene框架的结构示意图[65]。(b) Sb2O3/MXene(Ti3C2Tx)的制备工艺示意图[67]。(c)真空辅助过滤法制备MXene/SnS2复合材料示意图[71]。(d)三维f-Ti3C2/NiCo2Se4体系结构的合成过程示意图[76]

    Figure  3.  (a) Schematic showing the construction of hollow MXene spheres and 3D macroporous [65]. (b) Schematic illustration of the preparation process for Sb2O3/MXene(Ti3C2Tx)[67]. (c) Schematic illustration of the preparation of MXene/SnS2 composite by vacuum-assisted filtration[71]. (d) Schematic illustration of the synthetic process of the 3D f-Ti3C2/NiCo2Se4 architectures[76].

    图  4  (a) Te-SnS2/MXene结构的制备示意图[88]. (b) VSe2/MXene@C的合成示意图,VSe2/MXene@C中K+或电子的扩散路径,VSe2/MXene@C的结构模型[84]

    Figure  4.  :(a) Schematic of the preparation of Te-SnS2/MXene superstructure[88]. (b) Schematic preparation of the synthesis of VSe2/MXene@C, paths for diffusion of K+ or electrons in the VSe2/MXene@C, structural model of VSe2/MXene@C[84].

    表  1  MXene基材料在钠离子电池和钾离子电池中的最新性能比较

    Table  1.   Comparison of the latest performance of MXene-based materials in sodium-ion and potassium-ion batteries

    MXene and its composite materials are used in sodium-ion batteries MXene and its composites are used in potassium-ion batteries
    Materials Rate performance and cycle performance Ref. Materials Rate performance and cycle performance Ref.
    f-Ti3C2TxDMSO 267 mAh·g−1 at 0.1 A·g−1;76 mAh·g–1 after 1500 cycles at 1 A·g−1 [49] S-Ti3C2TX 101 mAh·g−1 at 0.1 A·g−1;41 mAh·g−1 after 2000 cycles at 0.5 A·g−1 [72]
    Sulfur-doped multilayer Ti3C2Tx 121.3 mAh·g−1 at 2 A·g−1;183.2 mAh·g−1 after 100 cycles at 0.1 A·g−1 [54] MXene@CNTs 250 mAh·g−1 at 0.05 A·g−1 [73]
    O-Ti3C2Tx 153 mAh·g−1 after 2500 cycles at 1 A·g−1 [56] CSs@ Ti3C2 195.8 mAh g−1 after 200 cycles at 0.1 A g−1 [74]
    Alkalizing three-dimensional Ti3C2 168 mAh·g−1 at 0.02 A·g−1 [57] MoSe2/MXene@C 355 mAh·g−1 after 100 cycles at 0.2 A·g−1 [75]
    p-Ti3C2Tx 166 mAh·g−1 at 1 A·g−1;124 mAh·g−1 at 10 A·g−1;24 mAh·g−1 at 100 A·g−1;
    1000 cycles at 1 A·g−1
    [59] Fe2O3@carbon/
    MXene
    169 mAh g−1 at 5 A·g−1;410 mAh g−1 after 200 cycles at 0.1 A·g−1 [76]
    VO2/MXene 280.9 mAh·g−1 after 200 cycles at 0.1 A·g−1 [61] VSe2/MXene@C 138.7 mAh·g−1 after 500 cycles at 1 A·g−1 [77]
    TiO2/Ti3C2 237.8 mAh·g−1 at 0.1 A·g−1 [62] Ti3C2TX/MnS 127 mAh·g−1 after 2000 cycles at 0.2 A·g−1 [78]
    MXene/SnS2 322 mAh·g−1 after 200 cycles at 0.1 A·g−1 [64] Te-SnS2/MXene 343.2 mAh·g−1 after 50 cycles at 0.2 A·g−1;165.8 mAh·g−1 after 5000 cycles at 10 A·g−1 [81]
    Ti3C2Tx/CoS2@NC 200.6 mAh·g−1 after 1500 cycles at 2 A·g−1 [67] CAS-Ti3C2 496.7 mAh·g−1 after 200 cycles at 0.1 A·g−1 [82]
    MoSe2/MXene 490 mAh·g−1 after 200 cycles at 1 A·g−1 [68] (CoS NP@NHC)@
    MXene
    210 mAh·g−1 after 500 cycles at 2 A·g−1 [84]
    Notes:f—Fewer layers; DMSO—Dimethyl sulfoxide; CNTs—Carbon nanotubes; CS—Carbon balls; p—Porous anisotropic structure; CAS—Cu12Sb4S13 quantum dots; NC—Nitrogen-doped carbon; NP—Nanoparticles
    下载: 导出CSV
  • [1] KRUYT B, VAN VUUREN D P, De Vries H J M, et al. Indicators for energy security[J]. Energy Policy, 2009, 37(6): 2166-2181. doi: 10.1016/j.enpol.2009.02.006
    [2] SHAFIEE S, TOPAL E. When will fossil fuel reserves be diminished?[J]. Energy Policy, 2009, 37(1): 181-189. doi: 10.1016/j.enpol.2008.08.016
    [3] KIM K-H, CHOI J, HONG S-H. Superior electrochemical sodium storage of V4P7 nanoparticles as an anode for rechargeable sodium-ion batteries[J]. Chemical Communications, 2019, 55(22): 3207-3210. doi: 10.1039/C8CC09184F
    [4] BONACCORSO F, COLOMBO L, YU G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501. doi: 10.1126/science.1246501
    [5] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
    [6] MA L, ABNEY C, LIN W. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1248. doi: 10.1039/b807083k
    [7] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. doi: 10.1002/adma.201102306
    [8] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-Dimensional Transition Metal Carbides[J]. ACS Nano, 2012, 6(2): 1322-1331. doi: 10.1021/nn204153h
    [9] NAGUIB M, HALIM J, LU J, et al. New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries[J]. Journal of the American Chemical Society, 2013, 135(43): 15966-15969. doi: 10.1021/ja405735d
    [10] KAJIYAMA S, SZABOVA L, SODEYAMA K, et al. Sodium-Ion Intercalation Mechanism in MXene Nanosheets[J]. ACS Nano, 2016, 10(3): 3334-3341. doi: 10.1021/acsnano.5b06958
    [11] XIU L, WANG Z, YU M, et al. Aggregation-Resistant 3D MXene-Based Architecture as Efficient Bifunctional Electrocatalyst for Overall Water Splitting[J]. ACS Nano, 2018, 12(8): 8017-8028. doi: 10.1021/acsnano.8b02849
    [12] GOGOTSI Y, ANASORI B. The Rise of MXenes[J]. ACS Nano, 2019, 13(8): 8491-8494. doi: 10.1021/acsnano.9b06394
    [13] 空心硅酸锰纳米材料的制备及其在癌症诊疗中的应用-李博雅. pdf[J
    [14] LUKATSKAYA M R, KOTA S, LIN Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2(8): 17105. doi: 10.1038/nenergy.2017.105
    [15] GU J, ZHU Q, SHI Y, et al. Single Zinc Atoms Immobilized on MXene (Ti3C2Cl x ) Layers toward Dendrite-Free Lithium Metal Anodes[J]. ACS Nano, 2020, 14(1): 891-898. doi: 10.1021/acsnano.9b08141
    [16] ZHAO R, DI H, HUI X, et al. Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries[J]. Energy & Environmental Science, 2020, 13(1): 246-257.
    [17] ZENG Z, YAN Y, CHEN J, et al. Boosting the Photocatalytic Ability of Cu2O Nanowires for CO2 Conversion by MXene Quantum Dots[J]. Advanced Functional Materials, 2019, 29(2): 1806500. doi: 10.1002/adfm.201806500
    [18] ZHANG Y, JIANG H, LIN Y, et al. In Situ Growth of Cobalt Nanoparticles Encapsulated Nitrogen-Doped Carbon Nanotubes among Ti3C2T x (MXene) Matrix for Oxygen Reduction and Evolution[J]. Advanced Materials Interfaces, 2018, 5(16): 1800392. doi: 10.1002/admi.201800392
    [19] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. doi: 10.1002/adma.201102306
    [20] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. doi: 10.1002/adma.201102306
    [21] GHIDIU M, LUKATSKAYA M R, ZHAO M-Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. doi: 10.1038/nature13970
    [22] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2T x MXene)[J]. Chemistry of Materials, 2017, 29(18): 7633-7644. doi: 10.1021/acs.chemmater.7b02847
    [23] HOPE M A, FORSE A C, GRIFFITH K J, et al. NMR reveals the surface functionalisation of Ti3C2 MXene[J]. Physical Chemistry Chemical Physics, 2016, 18(7): 5099-5102. doi: 10.1039/C6CP00330C
    [24] BENCHAKAR M, LOUPIAS L, GARNERO C, et al. One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry[J]. Applied Surface Science, 2020, 530: 147209. doi: 10.1016/j.apsusc.2020.147209
    [25] YANG J, NAGUIB M, GHIDIU M, et al. Two-Dimensional Nb-Based M4C3 Solid Solutions (MXenes)[J]. Y. Zhou. Journal of the American Ceramic Society, 2016, 99(2): 660-666. doi: 10.1111/jace.13922
    [26] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes)[J]. ACS Nano, 2015, 9(10): 9507-9516. doi: 10.1021/acsnano.5b03591
    [27] HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and Characterization of 2D Molybdenum Carbide (MXene)[J]. Advanced Functional Materials, 2016, 26(18): 3118-3127. doi: 10.1002/adfm.201505328
    [28] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films[J]. Chemistry of Materials, 2014, 26(7): 2374-2381. doi: 10.1021/cm500641a
    [29] WANG L, ZHANG H, WANG B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process[J]. Electronic Materials Letters, 2016, 12(5): 702-710. doi: 10.1007/s13391-016-6088-z
    [30] WANG X, GARNERO C, ROCHARD G, et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water[J]. J. Mater. Chem. A, 2017, 5(41): 22012-22023. doi: 10.1039/C7TA01082F
    [31] FENG A, YU Y, JIANG F, et al. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene[J]. Ceramics International, 2017, 43(8): 6322-6328. doi: 10.1016/j.ceramint.2017.02.039
    [32] LIU F, ZHOU A, CHEN J, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties[J]. Applied Surface Science, 2017, 416: 781-789. doi: 10.1016/j.apsusc.2017.04.239
    [33] BAO W, SHUCK C E, ZHANG W, et al. Boosting Performance of Na-S Batteries Using Sulfur-Doped Ti3C2T x MXene Nanosheets with a Strong Affinity to Sodium Polysulfides[J]. ACS Nano, 2019, 13(10): 11500-11509. doi: 10.1021/acsnano.9b04977
    [34] WANG C, SHOU H, CHEN S, et al. HCl-Based Hydrothermal Etching Strategy toward Fluoride-Free MXenes[J]. Advanced Materials, 2021, 33(27): 2101015. doi: 10.1002/adma.202101015
    [35] LI T, YAO L, LIU Q, et al. Fluorine-Free Synthesis of High-Purity Ti3C2T x (T=OH, O) via Alkali Treatment[J]. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119. doi: 10.1002/anie.201800887
    [36] LI G, TAN L, ZHANG Y, et al. Highly Efficiently Delaminated Single-Layered MXene Nanosheets with Large Lateral Size[J]. Langmuir, 2017, 33(36): 9000-9006. doi: 10.1021/acs.langmuir.7b01339
    [37] ZHANG B, ZHU J, SHI P, et al. Fluoride-free synthesis and microstructure evolution of novel two-dimensional Ti3C2(OH)2 nanoribbons as high-performance anode materials for lithium-ion batteries[J]. Ceramics International, 2019, 45(7): 8395-8405. doi: 10.1016/j.ceramint.2019.01.148
    [38] SUN W, SHAH S A, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx(MXene) in low-concentration hydrochloric acid solution[J]. J. Mater. Chem. A, 2017, 5(41): 21663-21668. doi: 10.1039/C7TA05574A
    [39] YANG S, ZHANG P, WANG F, et al. Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System[J]. Angewandte Chemie International Edition, 2018, 57(47): 15491-15495. doi: 10.1002/anie.201809662
    [40] PANG S-Y, WONG Y-T, YUAN S, et al. Universal Strategy for HF-Free Facile and Rapid Synthesis of Two-dimensional MXenes as Multifunctional Energy Materials[J]. Journal of the American Chemical Society, 2019, 141(24): 9610-9616. doi: 10.1021/jacs.9b02578
    [41] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene)[J]. Nanoscale, 2016, 8(22): 11385-11391. doi: 10.1039/C6NR02253G
    [42] LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8): 894-899. doi: 10.1038/s41563-020-0657-0
    [43] KAMYSBAYEV V, FILATOV A S, HU H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science, 2020, 369(6506): 979-983. doi: 10.1126/science.aba8311
    [44] AROLE K, BLIVIN J W, SAHA S, et al. Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching[J]. iScience, 2021, 24(12): 103403. doi: 10.1016/j.isci.2021.103403
    [45] LIU L, ORBAY M, LUO S, et al. Exfoliation and Delamination of Ti3C2T x MXene Prepared via Molten Salt Etching Route[J]. ACS Nano, 2022, 16(1): 111-118. doi: 10.1021/acsnano.1c08498
    [46] MEI J, AYOKO G A, HU C, et al. Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage[J]. Sustainable Materials and Technologies, 2020, 25: e00156. doi: 10.1016/j.susmat.2020.e00156
    [47] XUE N, LI X, ZHANG M, et al. Chemical-Combined Ball-Milling Synthesis of Fluorine-Free Porous MXene for High-Performance Lithium Ion Batteries[J]. ACS Applied Energy Materials, 2020, 3(10): 10234-10241. doi: 10.1021/acsaem.0c02081
    [48] SHI H, ZHANG P, LIU Z, et al. Ambient-Stable Two-Dimensional Titanium Carbide (MXene) Enabled by Iodine Etching[J]. Angewandte Chemie, 2021, 133(16): 8771-8775. doi: 10.1002/ange.202015627
    [49] ASLAM M K, XU M. A Mini-Review: MXene composites for sodium/potassium-ion batteries[J]. Nanoscale, 2020, 12(30): 15993-16007. doi: 10.1039/D0NR04111D
    [50] KUBOTA K, DAHBI M, HOSAKA T, et al. Towards K-Ion and Na-Ion Batteries as “Beyond Li-Ion”[J]. The Chemical Record, 2018, 18(4): 459-479. doi: 10.1002/tcr.201700057
    [51] WANG N, CHU C, XU X, et al. Comprehensive New Insights and Perspectives into Ti-Based Anodes for Next-Generation Alkaline Metal (Na+, K+) Ion Batteries[J]. Advanced Energy Materials, 2018, 8(27): 1801888. doi: 10.1002/aenm.201801888
    [52] CAO W, ZHANG E, WANG J, et al. Potato derived biomass porous carbon as anode for potassium ion batteries[J]. Electrochimica Acta, 2019, 293: 364-370. doi: 10.1016/j.electacta.2018.10.036
    [53] ER D, LI J, NAGUIB M, et al. Ti3C2 MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11173-11179.
    [54] WANG X, SHEN X, GAO Y, et al. Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti3C2TX[J]. Journal of the American Chemical Society, 2015, 137(7): 2715-2721. doi: 10.1021/ja512820k
    [55] YU Y-X. Prediction of Mobility, Enhanced Storage Capacity, and Volume Change during Sodiation on Interlayer-Expanded Functionalized Ti3C2 MXene Anode Materials for Sodium-Ion Batteries[J]. The Journal of Physical Chemistry C, 2016, 120(10): 5288-5296. doi: 10.1021/acs.jpcc.5b10366
    [56] LV G, WANG J, SHI Z, et al. Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries[J]. Materials Letters, 2018, 219: 45-50. doi: 10.1016/j.matlet.2018.02.016
    [57] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide[J]. Science, 2013, 341(6153): 1502-1505. doi: 10.1126/science.1241488
    [58] LEE S J, THEERTHAGIRI J, NITHYADHARSENI P, et al. Heteroatom-doped graphene-based materials for sustainable energy applications: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110849. doi: 10.1016/j.rser.2021.110849
    [59] LU C, YANG L, YAN B, et al. Nitrogen-Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis[J]. Advanced Functional Materials, 2020, 30(47): 2000852. doi: 10.1002/adfm.202000852
    [60] ZHU J, WANG M, LYU M, et al. Two-Dimensional Titanium Carbonitride Mxene for High-Performance Sodium Ion Batteries[J]. ACS Applied Nano Materials, 2018, 1(12): 6854-6863. doi: 10.1021/acsanm.8b01330
    [61] LI J, YAN D, HOU S, et al. Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping[J]. Journal of Materials Chemistry A, 2018, 6(3): 1234-1243. doi: 10.1039/C7TA08261D
    [62] SUN S, XIE Z, YAN Y, et al. Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 366: 460-467. doi: 10.1016/j.cej.2019.01.185
    [63] WU C, HUANG C, ZHANG Z, et al. Bulk Ti3C2Tx anodes for superior sodium storage performance: the unique role of O-termination[J]. Materials Chemistry Frontiers, 2021, 5(6): 2810-2823. doi: 10.1039/D0QM01073A
    [64] LIAN P, DONG Y, WU Z-S, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries[J]. Nano Energy, 2017, 40: 1-8. doi: 10.1016/j.nanoen.2017.08.002
    [65] ZHAO M, XIE X, REN C E, et al. Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage[J]. Advanced Materials, 2017, 29(37): 1702410. doi: 10.1002/adma.201702410
    [66] XIE X, KRETSCHMER K, ANASORI B, et al. Porous Ti3C2T x MXene for Ultrahigh-Rate Sodium-Ion Storage with Long Cycle Life[J]. ACS Applied Nano Materials, 2018, 1(2): 505-511. doi: 10.1021/acsanm.8b00045
    [67] GUO X, XIE X, CHOI S, et al. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(24): 12445-12452. doi: 10.1039/C7TA02689G
    [68] WU F, JIANG Y, YE Z, et al. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(3): 1315-1322. doi: 10.1039/C8TA11419F
    [69] WANG P, LU X, BOYJOO Y, et al. Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries[J]. Journal of Power Sources, 2020, 451: 227756. doi: 10.1016/j.jpowsour.2020.227756
    [70] YANG W, CHEN D, SHE Y, et al. Rational design of vanadium chalcogenides for sodium-ion batteries[J]. Journal of Power Sources, 2020, 478: 228769. doi: 10.1016/j.jpowsour.2020.228769
    [71] WU Y, NIE P, WU L, et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J]. Chemical Engineering Journal, 2018, 334: 932-938. doi: 10.1016/j.cej.2017.10.007
    [72] DU C-F, LIANG Q, ZHENG Y, et al. Porous MXene Frameworks Support Pyrite Nanodots toward High-Rate Pseudocapacitive Li/Na-Ion Storage[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 33779-33784.
    [73] YANG Q, GAO W, ZHONG W, et al. A synergistic Bi2S3/MXene composite with enhanced performance as an anode material of sodium-ion batteries[J]. New Journal of Chemistry, 2020, 44(7): 3072-3077. doi: 10.1039/C9NJ05986E
    [74] HUANG P, YING H, ZHANG S, et al. Multidimensional synergistic architecture of Ti3C2 MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan[J]. Chemical Engineering Journal, 2022, 429: 132396. doi: 10.1016/j.cej.2021.132396
    [75] XU E, ZHANG Y, WANG H, et al. Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 385: 123839. doi: 10.1016/j.cej.2019.123839
    [76] HUANG P, ZHANG S, YING H, et al. Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior Sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 417: 129161. doi: 10.1016/j.cej.2021.129161
    [77] NIE P, YUAN J, WANG J, et al. Prussian Blue Analogue with Fast Kinetics Through Electronic Coupling for Sodium Ion Batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20306-20312.
    [78] LIU Y, LIU X, WANG T, et al. Research and application progress on key materials for sodium-ion batteries[J]. Sustainable Energy & Fuels, 2017, 1(5): 986-1006.
    [79] GUO Z, DONG G, ZHANG M, et al. Sulfur-Decorated Ti3C2TX MXene for High-Performance Sodium/Potassium-Ion Batteries[J]. Chemistry-An Asian Journal, 2023, 18(18): e202300336. doi: 10.1002/asia.202300336
    [80] WANG T, ZENG J, GU X, et al. In-situ growth of nitrogen-doped carbon nanotubes on MXene nanosheets for efficient sodium/potassium-ion storage[J]. Frontiers in Materials, 2023, 10: 1214543. doi: 10.3389/fmats.2023.1214543
    [81] FENG Y, WU K, WU S, et al. Synthesis of sandwich-like structured carbon spheres@MXene as anode for high-performance potassium-ion batteries[J]. Applied Surface Science, 2023, 628: 157342. doi: 10.1016/j.apsusc.2023.157342
    [82] HUANG H, CUI J, LIU G, et al. Carbon-Coated MoSe2/MXene Hybrid Nanosheets for Superior Potassium Storage[J]. ACS Nano, 2019, 13(3): 3448-3456. doi: 10.1021/acsnano.8b09548
    [83] YANG S H, LEE Y J, KANG H, et al. Carbon-Coated Three-Dimensional MXene/Iron Selenide Ball with Core–Shell Structure for High-Performance Potassium-Ion Batteries[J]. Nano-Micro Letters, 2022, 14(1): 17. doi: 10.1007/s40820-021-00741-0
    [84] ZHANG H, XIONG D, XU C, et al. VSe2/MXene composite with hierarchical three-dimensional structure encapsulated in dopamine as an anode for potassium-ion batteries[J]. Electrochimica Acta, 2022, 421: 140487. doi: 10.1016/j.electacta.2022.140487
    [85] CAO J, LI J, LI D, et al. Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage[J]. Nano-Micro Letters, 2021, 13(1): 113. doi: 10.1007/s40820-021-00623-5
    [86] LI J, RUI B, WEI W, et al. Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries[J]. Journal of Power Sources, 2020, 449: 227481. doi: 10.1016/j.jpowsour.2019.227481
    [87] DONG G, FANG Y, LI L, et al. Three-dimensional Ti3C2T and MnS composites as anode materials for high performance alkalis (Li, Na, K) ion batteries[J]. Journal of Colloid and Interface Science, 2023, 633: 468-479. doi: 10.1016/j.jcis.2022.11.021
    [88] SUN H, ZHANG Y, XU X, et al. Strongly coupled Te-SnS2/MXene superstructure with self-autoadjustable function for fast and stable potassium ion storage[J]. Journal of Energy Chemistry, 2021, 61: 416-424. doi: 10.1016/j.jechem.2021.02.001
    [89] CAO Y, ZHANG Y, CHEN H, et al. Cu12Sb4S13 Quantum Dots/Few-Layered Ti3C2 Nanosheets with Enhanced K+ Diffusion Dynamics for Efficient Potassium Ion Storage[J]. Advanced Functional Materials, 2022, 32(6): 2108574. doi: 10.1002/adfm.202108574
    [90] WANG Q, ASTRUC D. State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis[J]. Chemical Reviews, 2020, 120(2): 1438-1511. doi: 10.1021/acs.chemrev.9b00223
    [91] YAO L, GU Q, YU X. Three-Dimensional MOFs@MXene Aerogel Composite Derived MXene Threaded Hollow Carbon Confined CoS Nanoparticles toward Advanced Alkali-Ion Batteries[J]. ACS Nano, 2021, 15(2): 3228-3240. doi: 10.1021/acsnano.0c09898
    [92] WU Y, SUN Y, ZHENG J, et al. MXenes: Advanced materials in potassium ion batteries[J]. Chemical Engineering Journal, 2021, 404: 126565. doi: 10.1016/j.cej.2020.126565
  • 加载中
计量
  • 文章访问数:  161
  • HTML全文浏览量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-11-15
  • 录用日期:  2023-12-06
  • 网络出版日期:  2023-12-28

目录

    /

    返回文章
    返回