留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PTFE/ZnO/Ti3C2Tx复合薄膜的抗湿性氨气传感器研究

高风娇 常雪婷 李俊峰 王东胜 高炜翔 孙士斌

高风娇, 常雪婷, 李俊峰, 等. 基于PTFE/ZnO/Ti3C2Tx复合薄膜的抗湿性氨气传感器研究[J]. 复合材料学报, 2024, 41(7): 3660-3671.
引用本文: 高风娇, 常雪婷, 李俊峰, 等. 基于PTFE/ZnO/Ti3C2Tx复合薄膜的抗湿性氨气传感器研究[J]. 复合材料学报, 2024, 41(7): 3660-3671.
GAO Fengjiao, CHANG Xueting, LI Junfeng, et al. Humidity-resistant ammonia sensor based on PTFE/ZnO/Ti3C2Tx composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3660-3671.
Citation: GAO Fengjiao, CHANG Xueting, LI Junfeng, et al. Humidity-resistant ammonia sensor based on PTFE/ZnO/Ti3C2Tx composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3660-3671.

基于PTFE/ZnO/Ti3C2Tx复合薄膜的抗湿性氨气传感器研究

基金项目: 上海市自然科学基金 (21ZR1426700)
详细信息
    通讯作者:

    孙士斌,学历,职称,硕士生/博士生导师,研究方向为港航物流装备微/纳功能器件(气体传感器、应力传感器、变色/储能器件等)的设计、制造及相关材料的合成与性能优化,装备表面强化与修复以及腐蚀与防护 E-mail: sunshibin@shmtu.edu.cn

  • 中图分类号: TB333

Humidity-resistant ammonia sensor based on PTFE/ZnO/Ti3C2Tx composite films

Funds: Shanghai Natural Science Foundation (No. 21ZR1426700)
  • 摘要: 开发基于半导体功能材料的抗湿性室温气体传感器一直都是气体传感器领域的研究热点和难点。本文从金属氧化物半导体的高灵敏度和稳定性、Mxene(Ti3C2Tx)的室温气敏性以及聚四氟乙烯(PTFE)的疏水性出发,以Mxene薄膜为基体,采用磁控溅射法分别将ZnO和PTFE沉积到Ti3C2Tx表面,制备了PTFE/ZnO/Mxene复合薄膜,同时构筑了基于复合薄膜的气体传感器。通过扫描电镜、透射电镜和X射线光电子能谱对复合薄膜进行了表征,并对气体传感器的气敏性能和抗湿性能进行了研究。研究结果表明,基于PTFE/ZnO/Ti3C2Tx复合薄膜的气体传感器在室温下对氨气具有良好的选择性、较高的灵敏度和优异的循环稳定性。随着PTFE薄膜厚度的增加,基于复合薄膜的气体传感器的抗湿性能逐渐增加,但灵敏度有所下降。

     

  • 图  1  薄膜的 SEM 图像以及EDS图像: (a) Ti3C2Tx薄膜; (b, d) ZnO/Ti3C2Tx 薄膜(c, e) PTFE/ZnO/Ti3C2Tx-4 薄膜

    Figure  1.  SEM images as well as EDS images of thin films: (a) Ti3C2Tx thin film; (b,d) ZnO/Ti3C2Tx thin film; (c,e) PTFE/ZnO/Ti3C2Tx-4 thin film

    图  2  长期稳定性测试后薄膜的 SEM 图像以及 EDS 图像 (a,c) ZnO/Ti3C2Tx薄膜(b,d) PTFE/ZnO/Ti3C2Tx-4 薄膜

    Figure  2.  SEM images as well as EDS images of the films after long-term stability tests (a,c) ZnO/Ti3C2Tx film;(b,d) PTFE/ZnO/Ti3C2Tx-4 film

    图  3  薄膜的 XPS 图谱: (a) 全谱图; (b) Ti 2p; (c) C 1s; (d) O 1s: (e) F 1s

    Figure  3.  XPS patterns of thin films: (a) full spectrum; (b) Ti 2p; (c) C 1s; (d) O 1s: (e) F 1s

    图  4  长期稳定性测试后薄膜的 XPS 图谱: (a) 全谱图; (b) O 1s

    Figure  4.  XPS profiles of the films after long-term stability testing: (a) full spectrum; (b) O 1s

    图  5  不同传感器的气敏响应测试: (a)对 100 ppm 氨气的响应图; (b)对 100 ppm 氨气的响应/恢复时间; (c)对不同挥 发性有机化合物的响应雷达图(100 ppm 氨气、500 ppm 异丙醇、乙醇、丙酮和甲醛); (d)对 5-500 ppm 氨气的动 态响应曲线; (e)对不同浓度氨气的响应保持率(传感器均在室温下相对湿度为 30 %的条件下监测)

    Figure  5.  Air Sensitive Response Testing of Different Sensors: (a) Response to 100 ppm ammonia;(b)Response/ recovery time to 100 ppm ammonia;(c) Radar plots of the response to different volatile organic compounds (100 ppm ammonia, 500 ppm isopropanol, ethanol, acetone, and formaldehyde); (d) Dynamic response curves of the response to ammonia from 5-500 ppm; (e) Response retention curves of different concentrations of ammonia(all sensors were tested at room temperature with 30% relative humidity).

    图  6  传感器的稳定性测试: (a) PTZ-4 传感器对 100 ppm 氨气的循环响应图; (b) PTZ-4 传感器对 100 ppm 氨气循环响 应的灵敏度点线图; (c) TZ 传感器 25 天内对 100 ppm 氨气响应图; (d) TZ 传感器和 PTZ-4 传感器 25 天内对 100 ppm 氨气响应的灵敏度点线图; (e) PTZ-4 传感器 25 天内对 100 ppm 氨气响应图; (f) 25 天的初始电阻变化率图((Ran 是传感器第 n 天的初始电阻)

    Figure  6.  Stability testing of the sensors: (a) Plot of the cyclic response of the PTZ-4 sensor to 100 ppm ammonia; (b) Dot line plot of the sensitivity of the PTZ-4 sensor to the cyclic response of 100 ppm ammonia; (c) Plot of the respo- nse of the TZ sensor to 100 ppm ammonia over 25 days; (d) Sensitivity dot line plot of the response of both the TZ and PTZ-4 sensors to 100 ppm ammonia over 25 days; (e) Plot of the initial resistivity change over 25 days of the PTZ-4 sensor sensitivity dot line plot; (e) plot of PTZ-4 sensor response to 100 ppm ammonia over 25 days; (f) plot of initial resistance change rate over 25 days ((Ran is the initial resistance of the sensor on day n))

    图  7  传感器在室温下对 100 ppm 氨气在不同相对湿度条件下响应-恢复曲线以及对应的 WCA (a-b) TZ; (c-d) PTZ-3; (e-f) PTZ-4; (g-h) PTZ-5; (i-j) PTZ-8; (k)传感器在 30-90%相对湿度范围内的CV值

    Figure  7.  Sensor response-recovery curves for 100 ppm ammonia at room temperature under different relative humidity conditions and corresponding WCAs (a-b) TZ; (c-d) PTZ-3; (e-f) PTZ-4; (g-h) PTZ-5; (i-j) PTZ-8 (k) CV of the sensor in the range of 30-90% RH

    图  8  ZnO/Ti3 C2 Tx 异质结构的能带状态示意图 (a)Before contact;(b)After contact;(c)In air;(d)In ammonia

    Figure  8.  Schematic energy band states of the ZnO/Ti3 C2 Tx heterostructure (a)Before contact;(b)After contact;(c)In air;(d)In ammonia

  • [1] 张文宇, 丁园, 孙宇凡, 等. 新型二维气敏材料的研究进展[J]. 陶瓷学报, 2023, 44(01): 1-11

    ZHANG Wenyu, DING Yuan, SUN Yufan, et al. Research progress of new two-dimensional gas sensing materials[J]. Journal of Ceramics, 2023, 44(01): 1-11(in Chinese).
    [2] WU M, HE M, HU Q, et al. Ti3C2 Mxene-Based Sensors with High Selectivity for NH3 Detec-tion at Room Temperature[J]. ACS Sensors, 2019, 4(10): 2763-2770. doi: 10.1021/acssensors.9b01308
    [3] ZHANG H F, XUAN J Y, ZHANG Q, et al. Strategies and challenges for enhancing perfo- rmance of MXene-based gas sensors: a review[J]. Rare Metals, 2022, 41(12): 3976-3999. doi: 10.1007/s12598-022-02087-x
    [4] 刘寿达, 刘娟娟, 刘潞潞, 等. 二维MXene负载MoO3/Ni-NiO异质结催化材料用于高效碱性电催化析氢反应[J]. 复合材料学报, 2023, 41(0): 1-11.

    LIU Shouda, LIU Juanjuan, LIU Lulu, et al. Two-dimensional MXene supported MoO3/NiO heterostructures for highperformance hydro-genevolution reaction at alkaline condition[J]. Acta Materiae Compositae Sinica, 2023, 41(0): 1-11 (in Chinese).
    [5] JIANG Y, XI H, LI L, et al. Mechanism of actio-n of the heterojunction structure of the photoca-talyst ZnO-g-C3N4@TiO2 and its application to the degradation of acetaminophen[J]. Journal of Photochemistry and Photobiology A: Chemi-stry, 2023, 445.
    [6] DING M, HAN C, YUAN Y, et al. Advances and Promises of 2D MXenes as Cocatalysts for Artificial Photosynthesis[J]. Solar RRL, 2021, 5(12).
    [7] SUN S B, WANG M W, CHANG X T, et al. W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit[J]. Sensors and Actuators B: Chemical, 2020, 304.
    [8] WU X N, GONG Y J, YANG B J, et al. Fabrication of SnO2-TiO2-Ti3C2Tx hybrids with multipletype heterojunctions for enhanc-ed gas sensing performance at room tempera-ture[J]. Applied Surface Science, 2022, 581.
    [9] YANG J, GUI Y, WANG Y, et al. NiO/Ti3C2Tx MXene nanocomposites sensor for ammonia gas detection at room temperature[J]. Journal of Industrial and Engineering Chemistry, 2023, 119: 476-484. doi: 10.1016/j.jiec.2022.11.070
    [10] LIU M, WANG Z, SONG P, et al. In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature[J]. Ceramics International, 2021, 47(16): 23028-23037. doi: 10.1016/j.ceramint.2021.05.016
    [11] ZHU X, CHANG X, TANG S, et al. Humidit-y Tolerant Chemiresistive Gas Sensors Based on Hydrophobic CeO2/SnO2 Heterostructure Films[J]. Acs Applied Materials&Interfaces 2022, 14 (22): 25680-25692.
    [12] YANG X, SALLES V, KANETI Y V, et al. Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning[J]. Sensors and Actuators B:Chemical, 2015, 220: 1112-1119. doi: 10.1016/j.snb.2015.05.121
    [13] HALIM J, COOK K M, NAGUIB M, et al. X-ray photoelectron spectroscopy of select mul-tilayered transition metal carbides (MXenes)[J]. Applied Surface Science, 2016, 362: 406-417. doi: 10.1016/j.apsusc.2015.11.089
    [14] HE T, LIU W, LV T, et al. MXene/SnO2 heterojunction based chemical gas sensors[J]. Sensors and Actuators B: Chemical, 2021, 329.
    [15] WU X, GONG Y, YANG B, et al. Fabrication of SnO2-TiO2-Ti3C2Tx hybrids with multiple-type heterojunctions for enhanced gas sensing performance at room temperature[J]. Applied Surface Science, 2022, 581.
    [16] 李仕友, 胡俊毅, 贺俊钦, 等. MXene/SA凝胶微球的制备及对U(VI)的吸附性能[J]. 复合材料学报, 2022, 39(10): 4868-4878.

    LI Shiyou, HU Junyi, HE Junqin, et al. Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4868-4878(in Chinese).
    [17] LI J, HAN K, HUANG J, et al. Polarized nucleation and efficient decomposition of Li2O2 for Ti2C MXene cathode catalyst under a mixed surface condition in lithium-oxygen batteries[J]. Energy Storage Materials, 2021, 35: 669-678. doi: 10.1016/j.ensm.2020.12.004
    [18] WU L, YUAN X, TANG Y, et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physic- al sensing to emerging intelligent and bionic devices[J]. PhotoniX, 2023, 4(1).
    [19] Kim H M, Sohn S, Ahn J S. Transparent and superhydrophobicproperties of PTFE films coated on glass substrate using RF-magnetron sputtering and Cat CVD methods[J]. Surface and Coatings Technology, 2013, 228: S389 doi: 10.1016/j.surfcoat.2012.05.085
    [20] KIM H J, LEE J H. Highly sensitive and selective gas sensors using p-type oxide semi-onductors: Overview[J]. Sensors and Actuat-ors, B: Chemical, 2014, 192: 607-627.
    [21] PARK B H, LEE M H, KIM S B, et al. Evalu- ation of the surface properties of PTFE foam coating filter media using XPS and contact angle measurements[J]. Applied Surface Scie-nce, 2011, 257(8): 3709-3716. doi: 10.1016/j.apsusc.2010.11.116
    [22] LIU M, WANG S, JIANG L. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2(7).
    [23] SIMONENKO E P, SIMONENKO N P, MO KRUSHIN A S, et al. Application of Titanium Carbide MXenes in Chemiresistive Gas Sens- ors[J]. Nanomaterials (Basel), 2023, 13(5).
    [24] PAUL R, DAS B, GHOSH R. Novel approa-ches towards design of metal oxide based heterostructures for room temperature gas sensor and its sensing mechanism: A recent p-rogress[J]. Journal of Alloys and Compounds, 2023, 941.
    [25] LEE E, VAHIDMOHAMMADI A, PRORO B C, et al. Room Temperature Gas Sensing of Two Dimensional Titanium Carbide (MXene)[J]. Acs Applied Materials& Interfaces, 2017, 9(42): 37184-37190.
    [26] KIM S J, KOH H J, REN C E, et al. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio[J]. ACS Nano, 2018, 12(2): 986-993. doi: 10.1021/acsnano.7b07460
    [27] CHOI B, SHIN D, LEE H S, et al. Nanoparti-cle design and assembly for p-type metal oxide gas sensors[J]. Nanoscale, 2022, 14(9): 3387-3397. doi: 10.1039/D1NR07561F
    [28] DAS S, MOJUMDER S, SAHA D, et al. Influence of major parameters on the sensing mechanism of semiconductor metal oxide based chemiresistive gas sensors: A review focused on personalized healthcare[J]. Senso- rs and Actuators, B: Chemical, 2022, 352.
    [29] 杨俊超, 潘勇, 秦墨林, 等. 金属氧化物半导体气敏传感器研究进展[J]. 化学传感器, 2022, 42(02): 10-18. doi: 10.3969/j.issn.1008-2298.2022.02.002

    YANG Junchao, PAN Yong, QIN Molin, et al. Research progress of metal oxide semiconduc- tor gas sensor[J]. Chemical Sensors, 2022, 42(02): 10-18(in Chinese). doi: 10.3969/j.issn.1008-2298.2022.02.002
    [30] LI N, JIANG Y, ZHOU C, et al. High Perform-ance Humidity Sensor Based on UrchinLike Composite of Ti3C2 MXene Derived TiO2 Nano wires[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38116-38125.
    [31] ZHANG R, DENG Z, CHANG J, et al. Bifunc-tional role of PDMS membrane in designing humiditytolerant H2S chemiresistors with high selectivity[J]. Chemical Communications, 2023, 59(12): 1689-1692. doi: 10.1039/D2CC05880D
  • 加载中
图(8)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  28
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-12-05
  • 录用日期:  2024-01-05
  • 网络出版日期:  2024-02-24
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回