留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基体改性对连续玻纤增强尼龙复合材料性能的影响

张鑫婷 尹洪峰 魏英 汤云 袁蝴蝶 任小虎 杨顺

张鑫婷, 尹洪峰, 魏英, 等. 基体改性对连续玻纤增强尼龙复合材料性能的影响[J]. 复合材料学报, 2024, 41(7): 3581-3590.
引用本文: 张鑫婷, 尹洪峰, 魏英, 等. 基体改性对连续玻纤增强尼龙复合材料性能的影响[J]. 复合材料学报, 2024, 41(7): 3581-3590.
ZHANG Xinting, YIN Hongfeng, WEI Ying, et al. Effect of matrix modification on the properties of continuous glass fiber reinforced nylon composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3581-3590.
Citation: ZHANG Xinting, YIN Hongfeng, WEI Ying, et al. Effect of matrix modification on the properties of continuous glass fiber reinforced nylon composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3581-3590.

基体改性对连续玻纤增强尼龙复合材料性能的影响

详细信息
    通讯作者:

    魏英,博士,讲师,研究方向为聚合物基复合材料 E-mail:weiying@xauat.edu.cn

  • 中图分类号: TB332

Effect of matrix modification on the properties of continuous glass fiber reinforced nylon composites

  • 摘要: 提升连续玻璃纤维(cGF)增强尼龙6复合材料(cGF/PA6)力学性能的重要途径之一是改善玻纤与尼龙之间的界面结合。本研究将星形支化聚酰胺6(SPA6)应用于cGF/PA6复合材料体系,采用熔融挤出结合热压成型法制备了不同含量SPA6的连续玻璃纤维增强尼龙复合材料(cGF/PA6-SPA6)。通过接触角实验测得SPA6与cGF 具有更相近的极性。DSC检测结果表明PA6与SPA6共混后基体熔融温度相差不大、结晶温度和结晶度有所提高。三点弯曲法测得PA6-SPA6基体的弯曲强度相对于PA6和 SPA6有所降低,但cGF/5wt.%SPA6和cGF/10wt.%SPA6复合材料的弯曲强度相对于cGF/PA6分别提高了4.9%和6.4%。短梁剪切试验测得cGF/5wt.%SPA6和cGF/10wt.%SPA6复合材料的层间剪切强度相对于cGF/PA6分别提高了16.7%和15.6%。悬臂梁摆锤冲击实验测得cGF/PA6和cGF/SPA6复合材料的冲击强度分别是PA6和 SPA6的12倍和26.3倍。结合冲击断口形貌观察,可以推断在cGF/PA6复合材料中加入5wt.%或10wt.%的SPA6可以提高复合材料的弯曲和剪切强度,而对其冲击强度影响不大,且成本较低,具有一定的应用价值。

     

  • 图  1  PA6-SPA6基体:(a) XRD曲线;(b) 二次升温熔融曲线;(c) 降温结晶曲线

    Figure  1.  PA6-SPA6 matrix: (a) XRD curve; (b) Second heating melting curve; (c) Cooling crystallization curve

    图  2  弯曲强度:(a) cGF/PA6-SPA6复合材料;(c) PA6-SPA6基体;层间剪切强度:(b) cGF/PA6-SPA6复合材料;(d) PA6-SPA6基体;(e) cGF/PA6、cGF/5wt.%SPA6复合材料载荷位移曲线

    Figure  2.  Flexural strength: (a) cGF/PA6-SPA6 composites; (c) PA6-SPA6 matrices; Interlamellar shearing strength: (b) cGF/PA6-SPA6 composites; (d) PA6-SPA6 matrices; (e) Load displacement curves of cGF/PA6 and cGF/5wt.%SPA6 composites

    图  3  PA6-SPA6基体相对黏度和熔融指数

    Figure  3.  Relative viscosity and melt flow rate of different PA6-SPA6 matrixes

    图  4  (a) 星形支化聚酰胺分子模型;(b) cGF/PA6-SPA6复合材料界面结合示意图

    Figure  4.  (a) Molecular model of star-branched polyamide; (b) Interface interactions diagram of cGF/PA6-SPA6 composites

    图  5  摆锤冲击强度:(a) cGF/PA6-SPA6复合材料;(b) PA6-SPA6基体

    Figure  5.  Pendulum impact strength: (a) cGF/PA6-SPA6 composites; (b) PA6-SPA6 matrices

    图  6  PA基复合材料宏观断口形貌:(a) cGF/PA6;(b) cGF/SPA6;PA基复合材料冲击断口形貌SEM图:(c) cGF/PA6;(d) cGF/SPA6;(e) cGF/50wt.%SPA6;(f) cGF/60wt.%SPA6

    Figure  6.  Macroscopic fracture morphology of PA composites: (a) cGF/PA6; (b) cGF/SPA6; SEM image of impact fracture morphology of PA composites: (c) cGF/PA6; (d) cGF/SPA6; (e) cGF/50wt.%SPA6; (f) cGF/60wt.%SPA6

    表  1  探测液体表面能参数[33]

    Table  1.   The surface energy parameters of probe liquids[33]

    Probe liquid $ {\gamma }_{\mathrm{L}\mathrm{V}} $/(mN·m−1) $ {\gamma }_{\mathrm{L}\mathrm{V}}^{\mathrm{d}} $/(mN·m−1) $ {\gamma }_{\mathrm{L}\mathrm{V}}^{\mathrm{p}} $/(mN·m−1)
    Water 72.8 21.8 51
    Ethylene glycol 48.3 29.3 19
    Notes:$ {\gamma }_{\mathrm{L}\mathrm{V}} $,$ {\gamma }_{\mathrm{L}\mathrm{V}}^{\mathrm{d}} $,$ {\gamma }_{\mathrm{L}\mathrm{V}}^{\mathrm{p}} $ are the surface tension, dispersion component, and polarity component of the tested liquid.
    下载: 导出CSV

    表  2  玻璃纤维(GF)、尼龙6(PA6)及星形支化聚酰胺6(SPA6)固体表面能色散分量、极性分量及总表面能

    Table  2.   Surface energy dispersion component, polarity component and total surface energy of Glass fiber (GF), Nylon 6 (PA6) and Star branched polyamide 6 (SPA6) solids

    GF PA6 SPA6
    $ {\gamma }_{\mathrm{S}\mathrm{V}}^{\mathrm{d}} $/(mN·m−1) 0.03 1.74 0.85
    $ {\gamma }_{\mathrm{S}\mathrm{V}}^{\mathrm{p}} $/(mN·m−1) 90.82 35.05 39.56
    $ {\gamma }_{SV} $/(mN·m−1) 90.85 36.79 40.41
    下载: 导出CSV

    表  3  PA6-SPA6试样名称和组成

    Table  3.   Name and composition of PA6-SPA6 samples

    Sample name Sample composition/wt.%
    SPA6 PA6
    7.1%SPA6 5 65
    14.3%SPA6 10 60
    28.6%SPA6 20 50
    42.9%SPA6 30 40
    57.1%SPA6 40 30
    71.4%SPA6 50 20
    85.7%SPA6 60 10
    下载: 导出CSV

    表  4  PA6-SPA6基体XRD参数

    Table  4.   XRD parameters of PA6-SPA6 matrix

    Sample name α1(2θ)/(º) α2(2θ)/(º) Crystallinity/%
    PA6 20.10 23.88 27.8
    7.1%SPA6 20.14 24.04 48.2
    14.3%SPA6 20.26 24.00 32
    28.6%SPA6 20.20 23.92 47.9
    42.9%SPA6 20.21 24.04 30.1
    57.1%SPA6 20.32 24.08 31.6
    71.4%SPA6 20.12 23.92 37.8
    85.7%SPA6 20.46 24.40 36.9
    SPA6 20.12 24.00 32.8
    Notes:α1 is the diffraction peak of PA6 (200) and (002) crystal planes, α2 is the diffraction peak of PA6 (202) crystal plane.
    下载: 导出CSV

    表  5  DSC二次升温曲线所测PA6-SPA6基体热性能

    Table  5.   Thermal properties of PA6-SPA6 matrix from DSC second heating curve

    SampleTm/℃Tc/℃∆Hm/(J·g−1)Crystallinity /%
    PA6217.56180.1452.3127.5
    7.1%SPA6216.4185.5265.1734.3
    14.3%SPA6215.06184.0655.6129.3
    28.6%SPA6217.17183.7253.9728.4
    42.9%SPA6215.04185.6960.3731.8
    57.1%SPA6217.2185.6759.7331.4
    71.4%SPA6215.08186.7568.936.3
    85.7%SPA6217.19185.6860.2531.7
    SPA6215.85187.1770.7437.2
    Notes:Tm, Tc, and ∆Hm are the melting temperature, crystallization temperature, and fusion enthalpy of each sample.
    下载: 导出CSV
  • [1] ZHENG J, SIEGEL R W, TONEY C G. Polymer crystalline structure and morphology changes in nylon-6/ZnO nanocomposites[J]. Journal of Polymer Science Part B Polymer Physics, 2003, 41(10): 1033-1050. doi: 10.1002/polb.10452
    [2] STEFAN N, STEFAN E, CHRISTIAN B, et al. Polymerization of ε-Caprolactam by Latent Precatalysts Based on Protected N-Heterocyclic Carbenes[J]. ACS Macro Letters, 2013, 2(7): 609-612. doi: 10.1021/mz400199y
    [3] ZHANG C, TJIU W W, LIU T, et al. Dramatically Enhanced Mechanical Performance of Nylon-6 Magnetic Composites with Nanostructured Hybrid One-Dimensional Carbon Nanotube Two-Dimensional Clay Nanoplatelet Heterostructures[J]. Journal of Physical Chemistry B, 2011, 115(13): 3392-3399. doi: 10.1021/jp112284k
    [4] TUNA B, BENKREIRA H. Reactive Extrusion of Polyamide 6 Using a Novel Chain Extender[J]. Polymer Engineering & Science, 2019, 59(s2): E25-E31.
    [5] WANG Y, HOU D-F, KE K, et al. Chemical-resistant polyamide 6/polyketone composites with gradient encapsulation structure: An insight into the formation mechanism[J]. Polymer, 2021, 212(1): 123173.
    [6] ZHANG T, KANG H-J. Enhancement of the Processability and Properties of Nylon 6 by Blending with Polyketone[J]. Polymers, 2021, 13(19): 3403-3418. doi: 10.3390/polym13193403
    [7] TUNA B, BENKREIRA H. Chain extension of recycled PA6[J]. Polymer Engineering & Science, 2017, 58(7): 1037-1042.
    [8] PRASHANTH S, SUBBAYA KM, NITHIN K et al. Fiber Reinforced Composites-A Review[J]. Journal of Material Science & Engineering, 2017, 06(03): 1000341.
    [9] DRYZEK E, WRóBEL M, JUSZYŃSKA-GAŁĄZKA E. Free-Volume and Tensile Properties of Glass Fibre Reinforced Polyamide 6 Composites[J]. Acta Physica Polonica A, 2017, 132(5): 1501-1505. doi: 10.12693/APhysPolA.132.1501
    [10] LI X, WANG X, YANG L, et al. Synergistic effect of polyfunctional silane coupling agent and styrene acrylonitrile copolymer on the water-resistant and mechanical performances of glass fiber-reinforced polyamide 6[J]. Polymers for Advanced Technologies, 2019, 30(8): 1951-1958. doi: 10.1002/pat.4627
    [11] YáñEZ-MACíAS R, RIVERA-SALINAS J E, SOLíS-ROSALES S, et al. Mechanical behavior of glass fiber-reinforced Nylon-6 syntactic foams and its Young's modulus numerical study[J]. Journal of Applied Polymer Science, 2021, 138(27): 50648. doi: 10.1002/app.50648
    [12] CHEN K, JIA M, SUN H, et al. Thermoplastic Reaction Injection Pultrusion for Continuous Glass Fiber-Reinforced Polyamide-6 Composites[J]. Materials, 2019, 12(3): 463. doi: 10.3390/ma12030463
    [13] CAMINERO M A, CHACóN J M, GARCíA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing, 2018, 68: 415-423. doi: 10.1016/j.polymertesting.2018.04.038
    [14] LUKE S S, SOARES D, MARSHALL J V, et al. Effect of fiber content and fiber orientation on mechanical behavior of fused filament fabricated continuous-glass-fiber-reinforced nylon[J]. Rapid Prototyping Journal, 2021, 27(7): 1346-1354. doi: 10.1108/RPJ-01-2021-0003
    [15] WANG C, ZHANG Y, YI Y, et al. Thermal, morphological and mechanical properties of glass fiber reinforced star-branched polyamide 6[J]. Polymer Composites, 2022, 43(3): 1617-1625. doi: 10.1002/pc.26482
    [16] NúñEZ CARRERO K C, HERRERO M, ASENSIO M, et al. Star-Branched Polyamides as the Matrix in Thermoplastic Composites[J]. Polymers, 2022, 14(5): 942. doi: 10.3390/polym14050942
    [17] REN J M, MCKENZIE T G, FU Q, et al. Star Polymers[J]. Chemical Reviews, 2016, 116(12): 6743-6836. doi: 10.1021/acs.chemrev.6b00008
    [18] WAN J, LI C, FAN H, et al. Elucidating isothermal crystallization behaviors of nylon-11s. Influence of star-chain branching[J]. Thermochimica Acta, 2012, 544: 99-104. doi: 10.1016/j.tca.2012.06.023
    [19] MARTINO L, BASILISSI L, FARINA H, et al. Bio-based polyamide 11: Synthesis, rheology and solid-state properties of star structures[J]. European Polymer Journal, 2014, 59: 69-77. doi: 10.1016/j.eurpolymj.2014.07.012
    [20] STEEMAN P, NIJENHUIS A. The effect of random branching on the balance between flow and mechanical properties of polyamide-6[J]. Polymer, 2010, 51(12): 2700-2707. doi: 10.1016/j.polymer.2010.04.017
    [21] FU P, WANG M, LIU M, et al. Preparation and characterization of star-shaped nylon 6 with high flowability[J]. Journal of Polymer Research, 2010, 18(4): 651-657.
    [22] SCHAEFGEN J R, FLORY P J. Synthesis of Multichain Polymers and Investigation of their Viscosities1[J]. Journal of the American Chemical Society, 1948, 70(8): 2709-2718. doi: 10.1021/ja01188a026
    [23] ZHU N, GONG H, HAN W, et al. Synthesis and characterization of star-branched polyamide 6 via anionic ring-opening polymerization with N, N′, N″-trimesoyltricaprolactam as a multifunctional activator[J]. Chinese Chemical Letters, 2015, 26(11): 1389-1392. doi: 10.1016/j.cclet.2015.06.005
    [24] WANG C, HU F, YANG K, et al. Synthesis and properties of star-branched nylon 6 with hexafunctional cyclotriphosphazene core[J]. RSC Advances, 2015, 5(107): 88382-88391. doi: 10.1039/C5RA15598C
    [25] American Society for Testing and Material. Standard test method for flexural properties of polymer matrix composite material: ASTM D7264-07[S]. Pennsylvania, United States: ASTM International, 2007 .
    [26] American Society for Testing and Materials. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344—16[S]. West Conshohocken, United States: American Society for Testing and Materials International, 2016.
    [27] American Society for Testing and Materials. Standard test methods for determining the lzod pendulum impact resistance of plastics: ASTM D256—10[S]. West Conshohocken, United States: American Society for Testing and Materials International, 2018.
    [28] 中国国家标准化管理委员会. 热塑性塑料熔体质量流动速率和熔体体积流动速率的测定: GB/T 3682—2000[S]. 北京: 中国标准出版社, 2000

    Standardization Administration of China. Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics: GB/T 3682—2000[S]. Beijing: Standards Press of China, 2000(in Chinese).
    [29] 中国国家标准化管理委员会. 纤维级聚己内酰胺(PA6)切片试验方法: GB/T 38138—2019[S]. 北京: 中国标准出版社, 2019.

    Standardization Administration of China. Test methods of fiber grade polycaprolactam (PA6) chip: GB/T 38138—2019[S]. Beijing: Standards Press of China, 2019(in Chinese).
    [30] CANTIN S, BOUTEAU M, BENHABIB F, et al. Surface free energy evaluation of well-ordered Langmuir–Blodgett surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006, 276(1-3): 107-115.
    [31] YOUNG T. Thomas young-an essay on the cohesion of fluids pdf.[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005
    [32] ZISMAN W A. Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution[J]. advances in chemistry, 1964, 43(1): 1-51
    [33] 杨浩邈, 黄鹏, 吴鹏, et al. 玻璃纤维表面能及其与不同树脂体系的润湿特性[J]. 机械工程材料, 2014, 38(10): 50-53.

    YANG Haomiao, HUANG Peng, WU Peng, et al. Surface energy of glass fiber and its wetting properties with different resin systems[J]. Materials For Machanical Engineering, 2014, 38(10): 50-53(in Chinese).
    [34] 张永, 周华龙, 王丰, et al. 尼龙66与尼龙6及其共混物的熔融与结晶行为[J]. 工程塑料应用, 2015, 43(6): 86-89. doi: 10.3969/j.issn.1001-3539.2015.06.020

    ZHANG Yong, ZHOU Hualong, WANG Feng, et al. Melting and crystallization behavior of nylon 66 and nylon 6 and their blends[J]. Engineering Plastics Application, 2015, 43(6): 86-89(in Chinese). doi: 10.3969/j.issn.1001-3539.2015.06.020
    [35] 李向阳, 张鸿宇, 王晨, et al. 成核剂对尼龙6结晶与性能的影响[J]. 塑料, 2020, 49(6): 13-15.

    Li Xiangyang, ZHANG Hongyu, WANGChen, et al. Effect of nucleating agent on crystallization and properties of nylon 6[J]. Plastics, 2020, 49(6): 13-15(in Chinese).
    [36] XIE W, JIANG N, GAN Z. Effects of Multi-Arm Structure on Crystallization and Biodegradation of Star-Shaped Poly(ε-caprolactone)[J]. Macromolecular Bioscience, 2008, 8(8): 775-784. doi: 10.1002/mabi.200800011
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  85
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-08
  • 修回日期:  2023-10-18
  • 录用日期:  2023-11-26
  • 网络出版日期:  2024-01-04
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回