留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水解氧化-溶胶-凝胶法提高钙钛矿太阳能电池中SnO2电子传输层性能

赵航 程泽通 吕宽心 陈立泽 杨育运 黄兴 李珍珍

赵航, 程泽通, 吕宽心, 等. 水解氧化-溶胶-凝胶法提高钙钛矿太阳能电池中SnO2电子传输层性能[J]. 复合材料学报, 2024, 42(0): 1-8.
引用本文: 赵航, 程泽通, 吕宽心, 等. 水解氧化-溶胶-凝胶法提高钙钛矿太阳能电池中SnO2电子传输层性能[J]. 复合材料学报, 2024, 42(0): 1-8.
ZHAO Hang, CHENG Zetong, Lü Kuanxin, et al. Improved Extraction Performance of SnO2 ETL for Perovskite Solar Cells by a Combined Hydrolysis Oxidation and Sol-Gel Method[J]. Acta Materiae Compositae Sinica.
Citation: ZHAO Hang, CHENG Zetong, Lü Kuanxin, et al. Improved Extraction Performance of SnO2 ETL for Perovskite Solar Cells by a Combined Hydrolysis Oxidation and Sol-Gel Method[J]. Acta Materiae Compositae Sinica.

水解氧化-溶胶-凝胶法提高钙钛矿太阳能电池中SnO2电子传输层性能

基金项目: 国家自然科学基金( 52102247 ),河北省自然科学基金( F2022209010 ),和唐山市科技计划项目( 21130207C)。
详细信息
    通讯作者:

    李珍珍,博士,副教授,研究方向为钙钛矿材料与器件 E-mail: zhenlzz@163.com

  • 中图分类号: TM914.4+2;TB332

Improved Extraction Performance of SnO2 ETL for Perovskite Solar Cells by a Combined Hydrolysis Oxidation and Sol-Gel Method

Funds: National Natural Science Foundation of China (No. 52102247), Natural Science Foundation of Hebei Province (F2022209010) and Tangshan Science and Technology Planning Project (21130207C).
  • 摘要: 二氧化锡(SnO2)由于其高电子迁移率、良的传导性和低温制备特性,在钙钛矿太阳能电池(PSCs)中得到了广泛的应用。目前,制备SnO2最常用的两种方法是SnCl2水解氧化法和SnO2溶胶-凝胶法。然而,SnCl2水解氧化虽然可以产生结晶良好的SnO2,但其可控性较差,使得器件性能的重复性较低。另一方面,溶胶-凝胶法制备的基于SnO2电子输运层的器件具有良好的重复性,但结晶度较差,导致电子输运性能下降。在本研究中,采用水解氧化和溶胶-凝胶相结合的方法制备了SnO2电子传输层。研究结果表明,采用SnCl2水解氧化法制备高质量的SnO2结晶层可以作为预生长模板,提高溶胶-凝胶法制备SnO2的结晶质量。此外,用溶胶-凝胶法制备的SnO2结晶层覆盖水解氧化SnO2层可以提高器件制备的重复性。由此制备的电子传递层方法可以有效地提高薄膜晶体的生长质量和电荷的提取能力,最终有助于提高器件的效率及稳定性并减少迟滞。

     

  • 图  1  不同制备方法制备的SnO2电子传输层(ETL)的XRD谱图

    Figure  1.  XRD patterns of SnO2 electron transport layers (ETL) prepared by different methods

    图  2  不同方法得到的SnO2 ETL在ITO上的透射线

    Figure  2.  Transmission curves of SnO2 ETL obtained by different methods on ITO

    图  3  在 ITO/SnCl2/SnO2(a)、ITO/SnCl2(b)、ITO/SnO2衬底上制备的(FAPbI3)0.83(MAPbBr3)0.17(c)钙 钛矿薄膜的 SEM 图像

    Figure  3.  SEM images of (FAPbI3)0.83(MAPbBr3)0.17 perovskite films prepared on ITO/SnCl2/SnO2 (a), ITO/SnCl2 (b), ITO/SnO2 substrate (c)

    图  4  在玻璃、ITO/SnCl2/SnO2、ITO/SnCl2和ITO/SnO2基底上制备的(FAPbI3)0.83(MAPbBr3)0.17薄膜的稳态荧光光谱(a)和瞬态荧光光谱(b)

    Figure  4.  The steady-state fluorescence spectra (a) and transient fluorescence spectra (b) of (FAPbI3)0.83(MAPbBr3)0.17 films prepared on Glass, ITO/SnCl2/SnO2, ITO/SnCl2, and ITO/SnO2 substrates.

    图  5  (a) ITO/SnCl2/SnO2基器件的暗J-V曲线; (b) ITO/SnCl2和(c) ITO/SnO2衬底

    Figure  5.  Dark J-V curves of devices based on (a) ITO/SnCl2/SnO2; (b) ITO/SnCl2, and (c) ITO/SnO2 substrates

    图  6  (FAPbI3)0.83(MAPbBr3)0.17在ITO/SnCl2/SnO2、ITO/SnCl2和ITO/SnO2三种衬底上制备的器件;(a)归一化开电压衰减曲线和(b)基于开电压衰减计算的电子寿命

    Figure  6.  (FAPbI3)0.83(MAPbBr3)0.17 devices prepared on three ITO/SnCl2/SnO2, ITO/SnCl2, and ITO/SnO2 substrates; (a) Normalized open voltage decay curves and (b) electron lifetime calculated by open voltage decay

    图  7  (a)三种方法制备的ETL制备的(FAPbI3)0.83(MAPbBr3)0.17太阳能电池的J-V曲线; (b)基于三种方法制备的ETL, 20个器件(FAPbI3)0.83(MAPbBr3)0.17器件的效率箱形图。

    Figure  7.  (a) J-V curves of (FAPbI3)0.83(MAPbBr3)0.17 solar cells fabricated with ETLs prepared by using the three methods; (b) Box plot of efficiencies of 20 devices for (FAPbI3)0.83(MAPbBr3)0.17 devices based on different ETLs.

    图  8  在ITO/SnCl2/SnO2和ITO/SnCl2衬底上制备的器件在惰性环境中储存14天的效率变化

    Figure  8.  Efficiency changes of devices prepared on ITO/SnCl2/SnO2 ITO/SnCl2 and ITO/SnO2 substrates stored in inert environment for 14 days

    表  1  不同衬底(FAPbI3)0.83(MAPbBr3)0.17薄膜的瞬态荧光光谱拟合参数

    Table  1.   TRPL fitting parameters of (FAPbI3)0.83(MAPbBr3)0.17 films prepared on different substrates

    Samples Glass SnCl2/SnO2 SnCl2 SnO2
    τ1 Value /ns 5.52 2.09 4.32 4.04
    τ1 Rel./% 68.48 35.87 55.79 58.24
    τ2 Value /ns 38.16 20.63 25.56 29.91
    τ2 Rel./% 31.52 64.13 44.21 41.76
    τave Value /ns 30.36 19.64 21.83 25.81
    Notes: τ1 Value and τ2 Value are fast decay life and slow decay life; τ1 Rel. and τ2 Rel. are the proportion of fast decay lifespan and the proportion of slow decay lifespan; τave Value is fluorescence lifetime of perovskite charge carriers
    下载: 导出CSV

    表  2  不同制备方法制备的(FAPbI3)0.83(MAPbBr3)0.17器件作为电子传输层的光电参数

    Table  2.   Optoelectronic parameters of (FAPbI3)0.83(MAPbBr3)0.17 devices prepared using different preparation methods as electron transport layers

    ETLs Voc/V Jsc /(mA·cm−2) FF/% PCE/%
    SnCl2-revese 0.99 21.31 62.90 13.30
    SnCl2-forward 0.90 21.25 45.95 8.78
    SnO2-reverse 0.89 21.92 63.43 12.38
    SnO2-forward 0.87 21.44 59.74 11.16
    SnCl2/SnO2-reverse 1.08 20.81 72.56 16.32
    SnCl2/SnO2-forward 1.07 20.75 70.51 15.64
    Notes: Jsc is short-circuit current; FF is fill factor; PCE is the photoelectric conversion efficiency of perovskite solar cells.
    下载: 导出CSV
  • [1] MARTIN A. Green , ANITA Ho-Baillie , Henry J Snaith , The Emergence of Perovskite Solar Cells[J]. Nature Photonics, 2014, 8 (7): 506-514.
    [2] ABDULAZIZ S. R. Bati, ZHONG Yu Lin, PAUL L. Burn , et al. Next-Generation Applications for Integrated Perovskite Solar Cells[J]. Communications Materials, 2023, 4 (1): 2.
    [3] SHI Jiangjian, XU Xin, LI Dongmei, et al. Interfaces in Perovskite Solar Cells[J]. Small, 2015, 11(21): 2472-2486. doi: 10.1002/smll.201403534
    [4] SEO Jangwon, NOH Jun Hong, SEOK Sang Il, Rational Strategies for Efficient Perovskite Solar Cells[J]. Accounts of chemical research, 2016, 49 (3): 562-572.
    [5] CHENG Ming, ZUO Chuantian, WU Yongzhen, et al. Charge-Transport Layer Engineering in Perovskite Solar Cells[J]. Sci Bull, 2020, 65(15): 1237-1241. doi: 10.1016/j.scib.2020.04.021
    [6] MOHAMAD Noh Mohamad Firdaus, HOONG Teh Chin, RUSLI Daik , et al. Teridi Mohd Asri Mat, The Architecture of the Electron Transport Layer for a Perovskite Solar Cell[J]. JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (4): 682-712.
    [7] SHINI Foo , MARIYAPPAN Thambidurai, PONNUSAMY Senthil Kumar , et al. Recent Review on Electron Transport Layers in Perovskite Solar Cells[J]. International Journal of Energy Research, 2022, 46 (15): 21441-21451.
    [8] LI Fumin, SHEN Zhitao, WENG Yujuan, et al. Novel Electron Transport Layer Material for Perovskite Solar Cells with over 22% Efficiency and Long-Term Stability[J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30(45): 2004933. doi: 10.1002/adfm.202004933
    [9] JAE Paik Min , WOOK Yoo Jin , JAEWANG Park , et al. SnO2–TiO2 Hybrid Electron Transport Layer for Efficient and Flexible Perovskite Solar Cells[J]. ACS Energy Letters, 2022, 7 (5): 1864-1870.
    [10] WANG Yongling, WAN Jiawei, DING Jie, et al. A Rutile TiO2 Electron Transport Layer for the Enhancement of Charge Collection for Efficient Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2019, 58(28): 9414-9418. doi: 10.1002/anie.201902984
    [11] JIANG Qi, ZHANG Xingwang, YOU Jingbi, SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells[J]. Small, 2018, 14 (31): 1801154.
    [12] HUANG Xiangping, DU Jianhui, GUO Xing, et al. Polyelectrolyte-Doped SnO2 as a Tunable Electron Transport Layer for High-Efficiency and Stable Perovskite Solar Cells[J]. Solar RRL, 2020, 4 (1): 1900336.
    [13] MOHAMAD Noh Mohamad Firdaus , AFFIQAH Arzaee Nurul , JAVAD Safaei , et al. Eliminating Oxygen Vacancies in SnO2 Films Via Aerosol-Assisted Chemical Vapour Deposition for Perovskite Solar Cells and Photoelectrochemical Cells[J]. Journal of Alloys and Compounds, 2019, 773: 997-1008.
    [14] KUANG Yinghuan, VALERIO Zardetto , RODERIKE van Gils , et al Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO2 as an Electron Transport Layer in Planar Perovskite Solar Cells[J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (36): 30367-30378.
    [15] JIANG Xixi, XIONG Yuli, ZHANG Zhihui, et al. Efficient Hole-Conductor-Free Printable Mesoscopic Perovskite Solar Cells Based on Sno2 Compact Layer[J]. Electrochimica Acta, 2018, 263: 134-139.
    [16] DONG Qingshun, SHI Yantao, ZHANG Chunyang, et al. Energetically Favored Formation of SnO2 Nanocrystals as Electron Transfer Layer in Perovskite Solar Cells with High Efficiency Exceeding 19%[J]. Nano Energy, 2017, 40: 336-344. doi: 10.1016/j.nanoen.2017.08.041
    [17] DONG Qingshun, SHI Yantao, WANG Kai, et al. Insight into Perovskite Solar Cells Based on Sno2 Compact Electron-Selective Layer[J]. The Journal of Physical Chemistry C, 2015, 119(19): 10212-10217. doi: 10.1021/acs.jpcc.5b00541
    [18] MARYAM Haghighi , NAHID Ghazyani , SABA Mahmoodpour , et al. Low-Temperature Processing Methods for Tin Oxide as Electron Transporting Layer in Scalable Perovskite Solar Cells[J]. Solar RRL, 2023: 2201080.
    [19] LI Jing, BU Tongle, LIU Yifan, et al. Enhanced Crystallinity of Low-Temperature Solution-Processed SnO2 for Highly Reproducible Planar Perovskite Solar Cells[J]. ChemSusChem, 2018, 11(17): 2898-2903. doi: 10.1002/cssc.201801433
    [20] KE Weijun, ZHAO Dewei, ALEXANDER J. Cimaroli , et al. Effects of Annealing Temperature of Tin Oxide Electron Selective Layers on the Performance of Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2015, 3 (47): 24163-24168.
    [21] KE Weijun, FANG Guojia, LIU Qin, et al. Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2015, 137(21): 6730-6733. doi: 10.1021/jacs.5b01994
    [22] LIU Aqiang, LIU Kang, ZHOU Huimin, et al. Solution Evaporation Processed High Quality Perovskite Films[J]. Science Bulletin, 2018, 63 (23): 1591-1596.
    [23] LARRY Partain , Solar Cell Device Physics. In Solar Cells and Their Applications, John Wiley & Sons, Inc: 2010; pp 67-109.
    [24] WANG Minhuan, ZHAO Yepin, JIANG Xiaoqing, et al. Rational Selection of the Polymeric Structure for Interface Engineering of Perovskite Solar Cells[J]. Joule, 2022, 6(5): 1032-1048. doi: 10.1016/j.joule.2022.04.002
    [25] TABU Mbumba Manala , MAURICE Malouangou Davy , MATONDO Tsiba Jadel , et al. Compositional Engineering Solutions for Decreasing Trap State Density and Improving Thermal Stability in Perovskite Solar Cells[J]. JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (40): 14047-14064.
  • 加载中
计量
  • 文章访问数:  63
  • HTML全文浏览量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-22
  • 修回日期:  2023-12-26
  • 录用日期:  2024-01-05
  • 网络出版日期:  2024-02-24

目录

    /

    返回文章
    返回