留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米银复合抗菌剂及其载体的研究进展

金晶 张帆

金晶, 张帆. 纳米银复合抗菌剂及其载体的研究进展[J]. 复合材料学报, 2024, 41(7): 3446-3456.
引用本文: 金晶, 张帆. 纳米银复合抗菌剂及其载体的研究进展[J]. 复合材料学报, 2024, 41(7): 3446-3456.
JIN Jing, ZHANG Fan. Research Status of AgNPs Composite Antibacterial Agent and its Carriers[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3446-3456.
Citation: JIN Jing, ZHANG Fan. Research Status of AgNPs Composite Antibacterial Agent and its Carriers[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3446-3456.

纳米银复合抗菌剂及其载体的研究进展

基金项目: 中央高校基础研究基金(BLX202134);中国博士后科学基金(2022M710409);国家自然科学基金青年科学基金项目(32301519)
详细信息
    通讯作者:

    张 帆,博士,教授,博士生导师,研究方向为家具设计与制造 E-mail: zhangfan1976@163.com

  • 中图分类号: TB381;TB383;TB332

Research Status of AgNPs Composite Antibacterial Agent and its Carriers

Funds: Fundamental Research Funds for the Central Universities (BLX202134); the China Postdoctoral Science Foundation (2022M710409); National Natural Science Foundation Youth Science Foundation Project (32301519)
  • 摘要: 近年来,新型抗菌材料的开发受到了各领域的极大关注,抗菌技术的应用与人类的健康生活息息相关,有巨大的发展前景。纳米银系抗菌剂是目前应用最广泛的抗菌剂之一,本篇论文对纳米银(AgNPs)的抗菌机制进行了讨论,综述了AgNPs无机抗菌剂与天然抗菌剂、有机抗菌剂和其它无机抗菌剂等复合的新型抗菌剂的研究进展,同时,从无机载体、有机载体和新型载体这三个方面对纳米银系抗菌剂的载体进行了总结,为AgNPs抗菌剂的进一步研究与应用提供参考。

     

  • 图  1  纳米银(AgNPs)抗菌机制[4-7]

    Figure  1.  Antibacterial mechanism of silver nanoparticles(AgNPs)[4-7]

    图  2  卤胺化合物的杀菌及再生过程示意图[25]

    Figure  2.  Schematic diagram of sterilization and regeneration process of halogen amine compounds[25]

    图  3  沸石的框架结构:(a)一级结构单元; (b)二级结构单元; (c)笼状结构单元;(d) FAU 型沸石的骨架结构[41]

    Figure  3.  Framework structure of zeolite:(a) Primary structural unit;(b) secondary structural unit; (c) cage structural unit; (d) framework structure of FAU type zeolite[41]

    图  4  GO(a)和AgNPs@GO(b)的结构[52]

    Figure  4.  Structure of GO(a) and AgNPs@GO(b) [52]

    图  5  CS-AgNPs纳米复合网络膜的制备流程及抗菌机制[56]

    Figure  5.  Preparation process and antibacterial mechanism diagram of CS-AgNPs Nanocomposite network membrane[56]

    图  6  MOF 沉积木质材料制备原理图及其抗菌机制[66]

    Figure  6.  Schematics of the fabrication of MOF-deposited woody materials and their antibacterial mechanism[66]

    表  1  AgNPs抗菌剂载体的分类、结构及负载方式

    Table  1.   The classification, structure and loading method of different AgNPs carriers

    Classification Common carriers Structure Load mode Ref.
    Inorganic carrier Zeolite Three-dimensional open architecture Physical adsorption, electrostatic
    binding, covalent grafting
    [41,46-47,52]
    Montmorillonite 2∶1 lamellar structure
    Zirconium Phosphate Layered structure
    Graphene Oxide Carbon honeycomb structure
    Organic carrier Chitosan Linear network structure Physical adsorption, in situ reduction, macromolecular matrix effect [56,59,61]
    Liposomes A spherical vesicle with a bilayer
    membrane structure
    Physical coating
    Nano-cellulose Fibrous structure Physical adsorption, in situ reduction
    New carrier Mental Organic Framework Three-dimensional network structure
    with metal ions as the center
    Self-assembly of metal ions, loading of porous structure [68-69]
    Microcapsule Core-shell structure In situ polymerization or deposition
    下载: 导出CSV
  • [1] LU X, YE J, SUN Y, et al. Ligand effects on the structural dimensionality and antibacterial activities of silver-based coordination polymers[J]. Dalton Transactions, 2014, 43(26): 10104-10113. doi: 10.1039/c4dt00270a
    [2] 廖建明. 抗菌防水纸基功能材料的制备与性能研究[D]. 华南理工大学, 2018.

    LIAO Jianming. Study on Preparation and Properties of Antibacterialand Waterproof Paper-Based Functional Material[D]. South China University of Technology, 2018(in Chinese).
    [3] 刘姝瑞, 谭艳君, 张明宇, 等. 抗菌材料的研究进展[J]. 纺织科学与工程学报, 2022, 39(1): 90-98. doi: 10.3969/j.issn.2096-5184.2022.01.017

    LIU Shurui, TAN Yanjun, ZHANG Mingyu, et al. Research progress of antibacterial materials[J]. Journal of Textile Science and Engineering, 2022, 39(1): 90-98(in Chinese). doi: 10.3969/j.issn.2096-5184.2022.01.017
    [4] 薛文强, 于世平. 纳米银的抗菌机制及临床应用研究[J]. 中国微生态学杂志, 2022, 34(1): 117-120.

    XUE Wenqiang, YU Shiping. Antibacterial mechanism and clinical application of silver nanoparticles[J]. Chinese Journal of microecology, 2022, 34(1): 117-120(in Chinese).
    [5] YU Y, YANG Z, REN S, et al. Multifunctional hydrogel based on ionic liquid with antibacterial performance[J]. Journal of Molecular Liquids, 2020, 299.
    [6] WANG W, ZHENG T, SHENG B, et al. Functionalization of polyvinyl alcohol composite film wrapped in a(m)-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing[J]. Applied Materials Today, 2019, 17: 36-44. doi: 10.1016/j.apmt.2019.07.001
    [7] 朱兰芳, 陈鹏鹏, 毛昌杰. 银纳米线与氧化石墨烯复合物的制备及其抗菌性能研究[J]. 安徽大学学报(自然科学版), 2021, 45(1): 83-91.

    ZHU Lanfang, CHEN Pengpeng, MAO ChangJie. Excellent antibacterial porperties of silver nanowires and grapheme oxide composites[J]. Journal of Anhui University (Natural Science Edition), 2021, 45(1): 83-91(in Chinese).
    [8] PAWAR V, DHANKA M, SRIVASTAVA R. Cefuroxime conjugated chitosan hydrogel for treatment of wound infections[J]. Colloids and Surfaces B-biointerfaces, 2019, 173: 776-787. doi: 10.1016/j.colsurfb.2018.10.034
    [9] 黄 昊, 任 燕, 马芳草, 等. 壳聚糖改性水性聚氨酯的性能[J]. 印染, 2022, 48(2): 41-44. doi: 10.3321/j.issn.1000-4017.2022.02.009

    HUANG Hao, REN yan, MA Fangcao, et al. Properties of waterborne polyurethane modified with chitosan[J]. China Dyeing & Finishing, 2022, 48(2): 41-44(in Chinese). doi: 10.3321/j.issn.1000-4017.2022.02.009
    [10] 惠爱平, 马梦婷, 杨芳芳, 等. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 42-48.

    HUI Aiping, MA Mengting, YANG Fangfang, et al. Antibacterial activity of quaternized chitosan modified ZnO/attapulgite nanocomposites[J]. Materials Reports, 2022, 36(3): 42-48(in Chinese).
    [11] 黄晓飞. 壳聚糖基载银材料的制备及其抗菌性能的研究[D]. 浙江大学, 2018.

    HUANG Xiaofei. Chitosan-based silver composite materials for antibacterial applications[D]. Zhejiang University, 2018(in Chinese).
    [12] PAN J, ZHANG Z, ZHAN Z, et al. In situ generation of silver nanoparticles and nanocomposite films based on electrodeposition of carboxylated chitosan[J]. Carbohydrate Polymers, 2020, 242.
    [13] 开梓翔, 刘 春, 刘宇翔, 等. 羧甲基壳聚糖复合纳米银、纳米氧化铜的制备及抑菌性研究[J]. 生物医学工程研究, 2021, 40(1): 38-42.

    KAI Zixiang, LIU Chun, LIU Yuxiang, et al. Preparation and bacteriostatic properties of carboxymethyl chitosan composite Ag nanoparticles or CuO nanoparticles[J]. Journal of Biomedical Engineering Research, 2021, 40(1): 38-42(in Chinese).
    [14] XU X F, YANG C D, SHU K X, et al. An antibacterial peptides recognition method based on bert and text-cnn[J]. Chinese journal of biotechnology, 2023, 39(4): 1815-1824.
    [15] LI H, SHEN X, ZHOU X, et al. Antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 on the Gram-negative bacteria Escherichia coli[J]. Journal of Zhejiang University-science B, 2017, 18(5): 410-420. doi: 10.1631/jzus.B1600139
    [16] 李文茜. 抗菌多肽修饰银纳米粒的抗菌活性研究[D]. 郑州大学, 2019.

    LI Wenqian. Study on antibacterial activity of antimicrobial peptide-modified silver nanoparticles[D]. Zhengzhou University, 2019(in Chinese).
    [17] 桑 婷. 纳米银-抗菌肽GL13K复合钛植入物涂层的构建及其协同抗菌效果的研究[D]. 南昌大学, 2021.

    SANG Ting. Hybrid coatings osilver nanoparticles and antimicrobial peptides GL13K on titanium implants with synergistic antibacterial effects[D]. Nanchang University, 2021(in Chinese).
    [18] ZHU J Y, MA Z Y, XIAO M, et al. Molecular Dynamics Simulations of The Interaction Between Chitosan and Bacterial Membranes[J]. Ppogress in Biochemistry and Biophysics, 2023, 50(8): 1995-2005.
    [19] 甘智豪, 林家洪, 韦次宁, 等. 纳米银/植物源复合抗菌剂的制备及其抑菌性能的研究[J]. 工业微生物, 2021, 51(2): 31-35. doi: 10.3969/j.issn.1001-6678.2021.02.005

    GAN Zhihao, LIN Jiahong, WEI Cining, et al. Preparation and antibacterial activity of nano-silver/plant-based composite antibacterial agent[J]. Industrial Micribiology, 2021, 51(2): 31-35(in Chinese). doi: 10.3969/j.issn.1001-6678.2021.02.005
    [20] WU K, WANG J, HUANG J, et al. Preparation and antibacterial effects of Ag/AgCl-doped quaternary ammonium-modified silicate hybrid antibacterial material[J]. Materials Science and Engineering C-materials for Biological Applications, 2019, 98: 177-184. doi: 10.1016/j.msec.2018.12.142
    [21] 张新歌, 梅 林, 鲁振坦等. 聚甲基丙烯酸二甲氨基乙酯季铵盐功能化的纳米银[C] //全国高分子学术论文报告会论文摘要集: 中国化学会, 2013: 1.

    ZHANG Xinge, MEI Ling, LU Zhentan, etc. Polydimethylaminoethyl methacrylate quaternary ammonium salt functionalized nano-silver [C] // Proceedings of the National Polymer Symposiun Abstracts: Chinese Chemical Society, 2013: 1(in Chinese).
    [22] 马占芳, 隋铭皓, 袁博杰等. 季铵盐/纳米银灭活水中细菌效能研究[J]. 哈尔滨工业大学学报, 2019, 51(08): 28-36. doi: 10.11918/j.issn.0367-6234.201811195

    MA Zhanfang, SUI Minghao, YUAN Bojie, etc. Inactivation efficacy of quaternized chitosan/ silver nanoparticles to bacteria in water[J]. Journal of Harbin Institute of Technology, 2019, 51(08): 28-36(in Chinese). doi: 10.11918/j.issn.0367-6234.201811195
    [23] TEZEL U, PAVLOSTATHIS S G. Quaternary ammonium disinfectants: microbial adaptation, degradation and ecology[J]. Current Opinion in Biotechnology, 2015, 33: 296-304. doi: 10.1016/j.copbio.2015.03.018
    [24] 张 正, 李 杰, 李长金, 等. 防护纤维材料用抗菌剂种类及抗菌抗病毒机制研究进展[J]. 石油化工, 2023, 1-11.

    ZHANG Zheng, LI Jie, LI Changjin, etc. Research progress of antibacterial agents in functional protective fiber-materials[J]. Petrochemical Technology, 2023, 1-11(in Chinese).
    [25] ZHANG L L, QIN C L, QIAN Y, et al. Migration, Transformation, and Toxicity of Quaternary Ammonium Antimicrobial Agents in the Environment[J]. Huan jing ke xue= Huanjing kexue, 2023, 44(1): 583-593.
    [26] YIN M L, WANG Y F, REN X H. Preparation of Modified Chitosan Antibacterial Nanospheres[J]. Chem. J. Chinese Universities, 2019, 40(1): 173.
    [27] QU X, LIU H, ZHANG C C, et al. Electrofabrication of functional materials: chloramine-based antimicrobial film for infectious wound treatment[J]. Acta Biomaterialia, 2018, 73: 190-203. doi: 10.1016/j.actbio.2018.02.028
    [28] 孙 萍. 卤胺抗菌剂的合成及其对亚麻织物的整理研究[D]. 江南大学, 2022.

    SUN Ping. Synthesis of N-halamine antibacterial agent andits finishing of linen fabric. Jiangnam University, 2022(in Chinese).
    [29] 王 岩, 王连军, 陈建芳. 含胍抗菌聚酯纤维的制备及其性能[J]. 纺织学报, 2019, 40(4): 26-31.

    WANG Yan, WANG Lianjun, CHEN Jianfang. Preparation and properties of guanidine-containing antibacterial polyester fibers[J]. Journal of Textile Research, 2019, 40(4): 26-31(in Chinese).
    [30] 韩晓丰, 王 亮, 宁 清, 等. 抗生素和纳米银对大肠杆菌的联合毒性和抗性突变诱导效应[J]. 环境化学, 2023, 42(01): 1-10.

    HAN Xiaofeng, WANG Liang, NING Qing, etc. Joint toxicity and resistance mutation-inducing effect of antibiotics and AgNPs on Escherichia coli[J]. Environmental Chemistry, 2023, 42(01): 1-10(in Chinese).
    [31] 孙国强, 杨建军, 陈春俊, 等. 纳米改性水性环氧树脂防腐涂料的研究进展[J]. 现代化工, 2022, 42(4): 33-38. doi: 10.12361/2661-3689-04-04-76335

    SUN Guoqiang, YANG Jianjun, CHEN Chunjun, et al. Research progress on nano modified waterborne epoxy anticorrosive coatings[J]. Modern Chemical Industry, 2022, 42(4): 33-38(in Chinese). doi: 10.12361/2661-3689-04-04-76335
    [32] 石燕花, 杜西领, 曲湲, 等. 抗菌-超疏水性载银纳米二氧化钛-聚氨酯复合纤维素纸膜制备及油水乳化液分离的应用[J]. 东北林业大学学报, 2022, 50(1): 116-122. doi: 10.3969/j.issn.1000-5382.2022.01.020

    SHI Yanhua, DU Xiling, QU Yuan, et al. Preparation of Ag@TiO NPs/PU composite cellulose membrane and separating oil-water emulsion[J]. Journal of Northeast Forestry University, 2022, 50(1): 116-122(in Chinese). doi: 10.3969/j.issn.1000-5382.2022.01.020
    [33] 潘世奇, 鲁舒心, 李若玉, 等. 纳米银-二氧化钛填充树脂力学及光控抗菌性能研究[J]. 生物医学工程学杂志, 2022, 39(4): 749-758.

    PAN Shiqi, LU Shuxin, LI Ruoyu, et al. Study on the mechanical properties and photo-control antibacterial properties of nano-silver-titanium dioxide resin[J]. Journal of Biomedical Engineering2022, 39(4): 749-758(in Chinese).
    [34] 罗志冬, 郭晏华. 补骨脂有效成分提取工艺的考察[J]. 中国新药杂志, 2007, (9): 705-708. doi: 10.3321/j.issn:1003-3734.2007.09.012

    LUO Zhidong, GUO Yanhua. Study on the extraction technology of effective components from Psoralea corylifolia L[J]. Chinese Journal of New Drugs, 2007, (9): 705-708(in Chinese). doi: 10.3321/j.issn:1003-3734.2007.09.012
    [35] MAO C, XIANG Y, LIU X, et al. Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures[J]. Acs Nano, 2017, 11(9): 9010-9021. doi: 10.1021/acsnano.7b03513
    [36] MAHARUBIN S, NAYAK C, PHATAK O, et al. Polyvinylchloride coated with silver nanoparticles and zinc oxide nanowires for antimicrobial applications[J]. Materials Letters, 2019, 249: 108-111. doi: 10.1016/j.matlet.2019.04.058
    [37] 张忠来, 李 侠. Ag/ZnO纳米复合抗菌剂应用于抗菌塑料的性能研究[J]. 广东化工, 2019, 46

    23): 35-36, 46. ZHANG Zhonglai, LI Xia. Study on the Properties of antibacterial plastics containing Ag/ZnO nano composite antibacterial agent[J]. Guangdong Chemical Industry, 2019, 46(23): 35-36, 46(in Chinese).
    [38] CHEN K, WANG F, LIU S, et al. In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property[J]. International Journal of Biological Macromolecules, 2020, 148: 501-509. doi: 10.1016/j.ijbiomac.2020.01.156
    [39] 陆 叶, 邵怡沁, 陈慰来. 纳米银抗菌针织物的制备与性能研究[J]. 现代纺织技术, 2021, 29(6): 67-71.

    LU Ye, SHAO Yiqin, CHEN Yunlai. Preparation and properties of nano-silver antibacterial knitted fabrics[J]. Advanced Textile Technology, 2021, 29(6): 67-71(in Chinese).
    [40] SEOK H, WANG L F, RHIM J W. Preparation and characterization of nanoclays-incorporated polyethylene/thermoplastic starch composite films with antimicrobial activity[J]. Food Packaging and Shelf Life, 2022, 31.
    [41] DENG S M, CHU Z T, LIANG J X, et al. Progress of using zeolite materials in soil remediation engineering[J]. Chinese Science Bulletin, 2021, 66(9): 1002-1013. doi: 10.1360/TB-2020-0678
    [42] LEI H, QIU X Y, Ming S, et al. Progress in Preparation and Catalysis of Two-dimensional (2D) and Three-dimensional (3D) Zeolites[J]. Acta Chimica Sinica, 2022, 80(2): 180-198. doi: 10.6023/A21100489
    [43] HANIM S A M, MALEK N A N N, IBRAHIM Z. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity[J]. Applied Surface Science, 2016, 36(5): 121-130.
    [44] 崔吉星, 张海萍, 张 辉, 等. 新型长效纳米银抗菌粉末涂料的制备及性能研究[J]. 涂层与防护, 2020, 41(1): 22-26.

    CUI Jixing, ZHANG Haiping, ZHANG Hui, et al. Preparation and properties of novel long-lasting nano-silver antimicrobial powder coatings[J]. Coating and Protection, 2020, 41(1): 22-26(in Chinese).
    [45] LIU X, YANG G. Mechanisms for cation exchange at the interfaces of montmorillonite nanoparticles: Insights for Pb2+ control[J]. Colloids and Surfaces A-physicochemical and Engineering Aspects, 2022, 641.
    [46] 宫 雪. 载纳米银抗菌复合材料的研究[D]. 西北师范大学, 2010.

    GONG Xue. The Study on Nano-Ag-loaded Antibacteria Composite Materials[D]. Northwest Normal University, 2010(in Chinese).
    [47] GAN H, ZHAO X, SONG B, et al. Gas phase dehydration of glycerol to acrolein catalyzed by zirconium phosphate[J]. Chinese Journal of Catalysis, 2014, 35(7): 1148-1156. doi: 10.1016/S1872-2067(14)60057-7
    [48] ZHOU G F, WANG Q, ZENG R Q, et al. Preparation and Application of Zirconium Phosphate and Its Derivatives[J]. Progress in Chemistry, 2014, 26(1): 87-99.
    [49] TANG J, WU J, YI S, et al. Experimental study on the antibacterial effects of zirconium phosphate gauze loaded with silver on the common bacteria on rat burn wound.[J]. Chinese Journal of Burns, 2004, 20(6): 333-5.
    [50] 翟羽翔, 杨成雪, 陈 林. 纳米无机载银磷酸锆对树脂基托理化性能的影响[J]. 口腔医学研究, 2018, 34(12): 1351-1355.

    ZHAI Yuxiang, YANG Chenxue, CHEN Lin. Effect of Nano-silver lnorganic Zirconium Phosphate on Physical and ChemicalProperties of Denture Base Resin[J]. Journal of Oral Science Research, 2018, 34(12): 1351-1355(in Chinese).
    [51] AHMED A, NIAZI M B K, JAHAN Z, et al. In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel membranes for wound dressing[J]. European Polymer Journal, 2020, 130.
    [52] HAI N D, DAT N M, NAM N T H, et al. A review on the chemical and biological synthesis of silver nanoparticles@graphene oxide nanocomposites: A comparison[J]. Materials Today Sustainability, 2023, 24: 2589-2347.
    [53] 王晓棠, 丁 洋, 陈可欣, 等. 石墨烯改性木器水性聚氨酯涂料的抗菌性探析[J]. 家具, 2020, 41(2): 75-78.

    WANG Xiaotang, DING Yang, CHEN Kexing, et al. Study on antibacterial property of graphene modified waterborne polyurethane coatings[J]. Furniture, 2020, 41(2): 75-78(in Chinese).
    [54] TAN S, WU X, XING Y, et al. Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect[J]. Colloids and Surfaces B-biointerfaces, 2020, 185.
    [55] 刘 可, 高 锋, 刘佳豪, 等. 响应面法优化羧甲基壳聚糖—纳米银凝胶工艺研究[J]. 中国食品工业, 2021, 20(2): 122-127.

    LIU Ke, GAO Feng, LIU Jiahao, et al. Optimization of carboxymethyl chitosan—silver nanoparticles gel process by response surface methodology[J]. China Food Industry, 2021, 20(2): 122-127(in Chinese).
    [56] HOSSEIN G, SHIRAVAN A, MOHADESEH M, et al. Antimicrobial chitosan-agarose full polysaccharide silver nanocomposite films[J]. International Journal of Biological Macromolecules, 2021, 179: 532-541. doi: 10.1016/j.ijbiomac.2021.02.192
    [57] CHANG W, SHEN J, LIU Z, CHEN Q. Application of organic nanocarriers for intraocular drug delivery[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2023, 52(3): 259-266.
    [58] LI B, LOGAN B E. Bacterial adhesion to glass and metal-oxide surfaces[J]. Colloids and Surfaces B:Biointerfaces, 2004, 36(2): 81-90. doi: 10.1016/j.colsurfb.2004.05.006
    [59] 陆梦甜. 脂质体包封银(AgNPs、Ag+)对大型溞的毒性效应研究[D]. 中国矿业大学, 2019.

    LU Mengtian. Toxic Effects of Liposome-encapsulated Silver (AgNPs、Ag+) on Daphnia magna[D]. China University of Mining and Technology, 2019(in Chinese).
    [60] 刘鹏涛, 王 聪, 栾云浩, 等. 纳米纤维素结合银纳米粒子用于抗菌材料的研究进展[J]. 天津科技大学学报, 2021, 36(6): 60-66.

    LIU Pengtao, WANG Cong, LUAN Yunhao, et al. Research Progress in Nanocellulose Combined with Silver Nanoparticles as Antibacterial Materials[J]. Journal of Tianjin University of Science & Technology, 2021, 36(6): 60-66(in Chinese).
    [61] LIU R, DAI L, SI C, et al. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers[J]. Carbohydrate Polymers, 2018, 195: 63-70. doi: 10.1016/j.carbpol.2018.04.085
    [62] MOHAMED N. Preparation and characterization of silver mesoporous silica nanoshells with promising antibacterial activity[J]. Journal of Porous Materials, 2020, 27(5): 1277-1285. doi: 10.1007/s10934-020-00900-5
    [63] WANG W, YU Z, Alsammarraie F K, et al. Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles[J]. Food Hydrocolloids, 2020, 100.
    [64] PETTINARI C, PETTINARI R, DI N C, et al. Antimicrobial MOFs[J]. Coordination Chemistry Reviews, 2021, 446.
    [65] JABBAR A, REHMAN K, JABRI T, et al. Improving curcumin bactericidal potential against multi-drug resistant bacteria via its loading in polydopamine coated zinc-based metal-organic frameworks[J]. Drug Delivery, 2023, 30(1).
    [66] SU M, ZHANG R, LI H, et al. In situ deposition of MOF199 onto hierarchical structures of bamboo and wood and their antibacterial properties[J]. Rsc Advances, 2019, 9: 40277-40285. doi: 10.1039/C9RA07046J
    [67] BERCHEL M, LE G T, DENIS C, et al. A silver-based metal-organic framework material as a 'reservoir' of bactericidal metal ions[J]. New Journal of Chemistry, 2011, 35(5): 1000-1003. doi: 10.1039/c1nj20202b
    [68] ZHU Z, HU J, ZHONG Z. Preparation and characterization of long-term antibacterial and pH-responsive Polylactic acid/Octenyl succinic anhydride-chitosan @ tea tree oil microcapsules[J]. International Journal of Biological Macromolecules, 2022, 220: 1318-1328. doi: 10.1016/j.ijbiomac.2022.09.038
    [69] HU G, ZHANG X, ZHAO J, et al. Development of novel self-adhesive resin cement with antibacterial and self-healing properties[J]. West China Journal of Stomatology, 2020, 38(3): 256-262.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  97
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2023-12-06
  • 录用日期:  2023-12-23
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回