留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高铌TiAl合金表面硅化物涂层的组织结构及其宽温域摩擦学性能

李涌泉 郝清锐 王存喜 刘广君 高阳 李轩

李涌泉, 郝清锐, 王存喜, 等. 高铌TiAl合金表面硅化物涂层的组织结构及其宽温域摩擦学性能[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 李涌泉, 郝清锐, 王存喜, 等. 高铌TiAl合金表面硅化物涂层的组织结构及其宽温域摩擦学性能[J]. 复合材料学报, 2024, 42(0): 1-9.
LI Yongquan, HAO Qingrui, WANG Cunxi, et al. Microstructure and Wide-temperature Range Tribological Properties of Silicide Coatings on High Niobium TiAl Alloy[J]. Acta Materiae Compositae Sinica.
Citation: LI Yongquan, HAO Qingrui, WANG Cunxi, et al. Microstructure and Wide-temperature Range Tribological Properties of Silicide Coatings on High Niobium TiAl Alloy[J]. Acta Materiae Compositae Sinica.

高铌TiAl合金表面硅化物涂层的组织结构及其宽温域摩擦学性能

基金项目: 北方民族大学中央高校基本科研业务费 (26);国家自然科学基金(52161009);过程装备与控制工程四川省高校重点实验室项目(GK202309);宁夏复合制造系统工程技术研究中心 (2023GCJS008)
详细信息
    通讯作者:

    李涌泉,博士,副教授,硕士生导师,研究方向为结构材料的服役损伤与表面控制技术 E-mail: 8386595@163.com

  • 中图分类号: (TG174.44;TB331)

Microstructure and Wide-temperature Range Tribological Properties of Silicide Coatings on High Niobium TiAl Alloy

Funds: Basic Research Fund for Central Universities of North Minzu University (26); National Natural Science Foundation of China (52161009); Key Laboratory Project of Process Equipment and Control Engineering (GK202309); Ningxia Engineering Research Center for Hybrid Manufuring System (2023GCJS008)
  • 摘要: 为了改善TiAlNb金属间化合物抗氧化耐磨损性能不足的问题,通过扩散渗法在TiAlNb9合金表面制备了双稀土改性的硅化物涂层,并对其微观结构与相组成进行了分析表征,对比研究了TiAlNb9基体和Si-Ce-Y共渗层与WC球在宽温域下的摩擦磨损行为。结果表明:不同催化剂NaF,NH4Cl,AlCl3·6H2O所制备的渗层均具有多层结构,从外到内依次为(Ti,Nb)Si2、(Ti,Nb)5Si4和(Ti,Nb)5Si3外层,(Ti,Nb)5Si4及(Ti,Nb)5Si3中间层,TiAl2内层,催化剂类型对渗层的致密性有显著影响。在实验条件下,Si-Ce-Y共渗层的抗摩擦磨损性能明显优于TiAlNb9基体,TiAlNb9基体在20℃的磨损机制为磨粒磨损和犁削磨损,在600℃下的磨损机制主要为氧化磨损、犁削磨损、磨粒磨损;Si-Ce-Y共渗层在20℃及600℃下的磨损机制相似,均为削层磨损和磨粒磨损。

     

  • 图  1  滑动-摩擦磨损示意图

    Figure  1.  Schematic illustration of the sliding friction and wear testing apparatus

    图  2  不同催化剂制备的Si-Ce-Y共渗层的截面形貌和元素浓度分布曲线 ((a),(a')) NH4Cl;((b),(b')) AlCl3·6 H2O;((c),(c')) NaF

    Figure  2.  Cross-sectional morphology and elemental concentration distribution curves of the Si-Ce-Y co-deposition coating prepared using different types of catalysts ((a),(a')) NH4Cl; ((b),(b'))AlCl3·6 H2O; ((c),(c'))NaF, 1-4 EDS Test point

    图  3  采用不同类型催化剂制备的Si-Ce-Y共渗层的表面XRD图谱

    Figure  3.  Surface XRD patterns of Si-Ce-Y co-deposition coating prepared using different types of catalysts

    图  4  采用NaF作为催化剂制备的Si-Ce-Y共渗层的中间层和内层的XRD图谱

    Figure  4.  XRD patterns of the intermediate and inner layer of Si-Ce-Y co-deposition coating prepared with NaF as activator

    图  5  TiAlNb9合金及Si-Y共渗层的宽温域摩擦系数曲线,(a) 20℃,(b) 600℃

    Figure  5.  Wide-temperature friction coefficients of TiAlNb9 alloy and Si-Y co-deposition coating, (a) 20℃,(b) 600℃

    图  6  宽温域下TiAlNb9合金和Si-Ce-Y共渗层与WC球对磨时的磨损率

    Figure  6.  Wear rates of TiAlNb9 alloy and Si-Ce-Y coating with WC ball at Wide-temperatures

    图  7  TiAlNb9合金和WC球20℃下的磨损形貌, (a), (b) TiAlNb9基体, (c) WC球

    Figure  7.  Wear scars of TiAlNb9 alloy and WC counterpart at 20℃, (a), (b) TiAlNb9 alloy, (c) WC counterpart, 5-6 EDS Test point

    图  10  Si-Ce-Y共渗层和WC球600℃下的磨损形貌, (a), (b) Si-Ce-Y共渗层, (c) WC球

    Figure  10.  Wear scars of Si-Ce-Y coating and WC counterpart at 600℃, (a), (b) Si-Ce-Y coating, (c) WC counterpart, 14-15 EDS Test point

    图  8  TiAlNb9合金和WC球600℃下的磨损形貌, (a), (b) TiAlNb9基体, (c) WC球

    Figure  8.  Wear scars of TiAlNb9 alloy and WC counterpart at 600℃, (a), (b) TiAlNb9 alloy, (c) WC counterpart, 7-9 EDS Test point

    图  9  Si-Ce-Y共渗层和WC球20℃下的磨损形貌, (a), (b) Si-Ce-Y共渗层, (c) WC球

    Figure  9.  Wear scars of Si-Ce-Y coating and WC counterpart at 20℃, (a), (b) Si-Ce-Y coating, (c) WC counterpart, 10-13 EDS Test point

  • [1] SOLECKA M, RADZI A, RUTKOWSKI B. New insight on study of Ni-base alloy clad layer after oxidation at 650℃[J]. Corrosion Science, 2019, 149: 244-248. doi: 10.1016/j.corsci.2019.01.013
    [2] ZOU Q, GUAN Y, LI Y G, et al. Advances and perspectives of TiAl alloy and its composites[J]. Journal of Yanshan University, 2020, 44(2): 95-107.
    [3] 宫声凯, 尚勇, 张继, 等. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(5): 1067-1076. doi: 10.11900/0412.1961.2019.00148

    GONG S K, SHANG Y, ZHANG J, et al. Applicaton and research of typical Intermetallics-based high temperature structural materials in china[J]. Acta metallurgica sinica, 2019, 55(5): 1067-1076. (in chinese doi: 10.11900/0412.1961.2019.00148
    [4] ZHANG C Y, ZHANG L X, HOU H. First-principles study on the elastic properties of D019-Ti3Al by the Co, Ni and Ga alloying[J]. Journal of Atomic and Molecular Physics, 2019, 36(6): 1025-1030.
    [5] PAN Y, LU X, LIU C C, et al. Effect of Sn addition on densification and mechanical properties of sintered TiAl base alloys[J]. Acta Metallurgica Sinica, 2018, 54(1): 93-99.
    [6] LIU J, ZHANG L, GE G. Study of the orientation relationship of the residual α2(Ti3Al) in γ(TiAl) sheet after heat treatment[J]. Journal of Material Engineering and Performance, 31(2022): 4224-4231.
    [7] PILONE D, MONDAL A, BROTZU A, et al, Enhanced high temperature mechanical behavior of an in situ TiAl Matrix Composite Reinforced with Alimina[J]. International Journal of Metalcasting, 2023, 77(2): 1139-1147.
    [8] 张强, 李慧中, 梁霄鹏, 等. 基于数值模拟的粉末冶金TiAl合金叶片模锻工艺研究[J]. 粉末冶金材料科学与工程, 2021, 26(1): 1-8. doi: 10.3969/j.issn.1673-0224.2021.01.001

    ZHANG Q, LI H Z, LIANG X P, et al. Research on die forging process of powder metallurgy TiAl alloy blade based on numerical simulation[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(1): 1-8. (in chinese doi: 10.3969/j.issn.1673-0224.2021.01.001
    [9] MOLAEI R, FATEMI A, PHAN N. Significance of hot isostatic pressing (HIP) on multiaxial deformation and fatigue behaviors of additive manufactured Ti-6Al-4V including build orientation and surface roughness effects[J]. International Journal of Fatigue, 2018, 117: 352-370. doi: 10.1016/j.ijfatigue.2018.07.035
    [10] XIANG L, TANG B, XUE X Y, et al. Microstructural characteristics and dynamic recrystallization behavior of β-γ TiAl based alloy during high temperature deformation[J]. Intermetallics, 2018, 97: 52-57. doi: 10.1016/j.intermet.2018.04.002
    [11] PING F P, HU Q M, Bakulin A V, et al. Alloying effects on properties of Al2O3 and TiO2 in connection with oxidation resistance of TiAl[J]. Intermetallics, 2016, 68: 57-62. doi: 10.1016/j.intermet.2015.09.005
    [12] 王欣, 罗学昆, 宇波, 等. 航空航天用钛合金表面工程技术研究进展[J]. 航空制造技术, 2022, 65(4): 14-24.

    WANG X, LUO X K, YU B, et al. Research progress on surface engineering technology of aerospace titanium alloys[J]. Aeronautical Manufacturing Technology, 2022, 65(4): 14-24.
    [13] SU Y, KONG F T, Wang Z B, et al. Oriented porous anodic oxide layers on Ti-50Al without standing oxidation resistance at 800 ℃[J]. Corrosion Science, 2019, 159: 108146-10855. doi: 10.1016/j.corsci.2019.108146
    [14] BISHOY A, PATRICK G, Christian M. Erratum to: Temperature measurement challenges and limitations for in-flight particles in suspense on plasma spraying[J]. Journal of Thermal Spray Technology, 2017, 26(4): 798-804. doi: 10.1007/s11666-017-0552-7
    [15] 王洪孔, 郑可, 高洁, 等. γ-TiAl合金表面TiC渗镀层的摩擦磨损性能[J]. 中国表面工程, 2018, 31(6): 28-33. doi: 10.11933/j.issn.1007-9289.20180605001

    WANG H K, ZHENG K, GAO J, et al. Wear properties of TiC permeation layer prepared on γ-TiAl alloy[J]. China Surface Engineering, 2018, 31(6): 28-33. (in chinese doi: 10.11933/j.issn.1007-9289.20180605001
    [16] 包雅婷, 王亚楠, 郑磊, 等. 阳极氧化对TiAl合金高温氧化行为和力学性能的影响[J]. 航空材料学报, 2021, 41(2): 72-79. doi: 10.11868/j.issn.1005-5053.2020.000129

    BAO Y T, WANG Y, ZHENG L, et al. effect of the anodization on high tempreture oxidation behavior and mechanical properties of TiAl alloy[J]. Journal of Aeronautical Materials, 2021, 41(2): 72-79. (in chinese doi: 10.11868/j.issn.1005-5053.2020.000129
    [17] KANJER A, OPTASANU V, MACRO C, et al. Improving the high temperature oxidation resistance of pure titanium by shot peening treatments[J]. Surface and Coatings Technology, 2018, 343: 93-100. doi: 10.1016/j.surfcoat.2017.10.065
    [18] 刘秀波, 刘元富, 穆俊世, 等. γ-TiAl合金激光熔覆高温自润滑耐磨复合材料涂层研究[J]. 摩擦学学报, 2009, 29(6): 499-504. doi: 10.3321/j.issn:1004-0595.2009.06.003

    LIU X B, LIU Y F, MU J S, et al. Laser cladding for high temperature self lubrication wear resistant composite coating on γ-TiAl intermetallic alloy[J]. Tribology, 2009, 29(6): 499-504. (in chinese doi: 10.3321/j.issn:1004-0595.2009.06.003
    [19] 李轩, 郭喜平. Nb-Ti-Si-Cr基超高温合金表面ZrSi2-NbSi2 复合渗层的组织及抗高温氧化性能[J]. 金属学报, 2015, 51(6): 693-699.

    LI X, GUO X P. Microstructure and oxidation behavior of ZrSi2-NbSi2 multilayer coatings on an Nb-Ti-Si-Cr base ultrahigh temperature alloy[J]. Acta metallurgica sinica, 2015, 51(6): 693-699. (in chinese
    [20] 刘英, 张永安, 王卫, 等. 稀土Y对Ni-Fe-Co-Cu合金微观组织和高温氧化性能的影响[J]. 稀有金属, 2020, 44(1): 9-14.

    LIU Y, ZHANG Y G, WANG W, etal. Influence of rare earth Y on microstructure and hogh temperature oxidation behavior of Ni-Fe-Co-Cu alloy[J]. Chinese Journal of Rare Matels, 2020, 44(1): 9-14. (in chinese
    [21] LI Y Q, XIE F Q, WU X Q, et al. Effects of Y2O3 on the microstructures and wear resistance of Si-Al-Y co-deposition coatings prepared on TiAl alloy by pack cementation technique[J], Applied Surface Science, 278(2013)30-36.
    [22] LI Y Q, LIANG G D, TIAN X D, et al. Si-Al-Y Co-deposition Coatings Prepared on Ti-Al Alloy for Enhanced High Temperature Oxidation Resistance[J]. Journal of Wuhan University of Technology-Mater, 2018, 33(4): 959-966. doi: 10.1007/s11595-018-1919-4
    [23] LI Y Q, YANG S L. Microstructure and hot corrosion resistance of Si-Al-Y coated TiAl alloy[J]. Journal of Central South University, 2020, 27: 2530-2537. doi: 10.1007/s11771-020-4478-8
    [24] 薛群基, 张俊彦. 润滑材料摩擦化学[J]. 化学进展, 2009, 21(11): 2445-2456.

    XUE Q J, ZHANG J Y. Tribochemistry of Lubricating Materials[J]. Progress in Chemistry, 2009, 21(11): 2445-2456. (in chinese
  • 加载中
计量
  • 文章访问数:  31
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2024-01-27
  • 录用日期:  2024-02-03
  • 网络出版日期:  2024-03-28

目录

    /

    返回文章
    返回