留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

后高温热处理对C/C-SiC复合材料微观结构及其力学性能的影响

马飞 罗浩 孙守业 史祥东 罗瑞盈 郭灵燕

马飞, 罗浩, 孙守业, 等. 后高温热处理对C/C-SiC复合材料微观结构及其力学性能的影响[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 马飞, 罗浩, 孙守业, 等. 后高温热处理对C/C-SiC复合材料微观结构及其力学性能的影响[J]. 复合材料学报, 2024, 42(0): 1-11.
MA Fei, LUO Hao, SUN Shouye, et al. Effects of high temperature heat treatment on the micro structure and mechanical performance of C/C-SiC composite materials[J]. Acta Materiae Compositae Sinica.
Citation: MA Fei, LUO Hao, SUN Shouye, et al. Effects of high temperature heat treatment on the micro structure and mechanical performance of C/C-SiC composite materials[J]. Acta Materiae Compositae Sinica.

后高温热处理对C/C-SiC复合材料微观结构及其力学性能的影响

基金项目: 内燃机与动力系统全国重点实验室开放课题(WCDL-GH-2020-0242)
详细信息
    通讯作者:

    罗浩,博士,研究方向为陶瓷基复合材料制备与性能研究 E-mail: luohao01@buaa.edu.cn

  • 中图分类号: TB332

Effects of high temperature heat treatment on the micro structure and mechanical performance of C/C-SiC composite materials

Funds: Open Project of National Key Laboratory for Internal combustion and Power Systems (WCDL-GH-2020-0242)
  • 摘要: 后高温热处理对反应熔融浸渗法(RMI)制备C/C-SiC复合材料的微观结构与性能有着至关重要的影响。为研究后高温热处理对RMI制备C/C-SiC复合材料微观结构和力学性能影响及机制,本研究通过等温化学气相渗透法(CVI)工艺,以天然气为碳源气体,氮气为载气和稀释气体,在碳纤维预制体内部沉积热解碳基体,制得密度为1.2 g/cm3的C/C多孔体,然后通过反应熔融浸渗法制备出C/C-SiC复合材料,研究了不同后高温热处理温度对C/C-SiC复合材料相组成、内应力及力学性能的影响。将制备得到的C/C-SiC复合材料分别在1300℃、1500℃和1700℃下进行后高温热处理,研究了后高温热处理对C/C-SiC复合材料密度、孔隙率、基体成分、内应力以及对弯曲性能的影响。结果表明:经1300℃、1500℃及1700℃后热处理后,C/C-SiC复合材料的密度降低,开孔率增加,SiC基体含量上升,SiC基体的分布更为广泛,同时还伴随有残余Si挥发产生的大孔,残余Si含量显著降低。在1300℃、1500℃和1700℃的后热处理导致弯曲强度先增加后减小,1500℃后处理时弯曲强度最大为296.52 MPa,随着后处理温度提高,弯曲模量降低,1700℃后热处理下降程度最大。

     

  • 图  1  后热处理对复合材料密度和孔隙率的影响:(a) 密度;(b)孔隙率

    Figure  1.  Effect of post heat treatment on density and porosity of composite materials: (a) Density; (b) Porosity

    图  2  后热处理对复合材料SiC基体含量及残余硅含量的影响:(a) SiC基体含量的变化;(b)残余Si含量的变化

    Figure  2.  The effect of post heat treatment on the content of SiC matrix and residual silicon in composite materials: (a) Changes in SiC matrix content;(b) Changes in residual Si content

    图  3  2250-PR-1300试样的SEM图片。(a) 整体结构;(b) 0°无纬布;(c) 碳毡;(d)针刺纤维;(e) 90°无纬布;(f) 纤维与基体炭之间的结合

    Figure  3.  SEM images of samples 2250-PR-1300. (a) Overall structure; (b) 0°weft free fabric; (c) Carbon felt; (d) Acupuncture fibers; (e) 90°weft free fabric; (f) The bonding between fibers and matrix carbon

    图  4  2250-PR-1500试样的SEM图片。(a) 整体结构;(b) 0°无纬布;(c) 碳毡;(d)针刺纤维;(e) 90°无纬布;(f) 纤维与基体炭之间的结合

    Figure  4.  SEM image of 2250-PR-1500 sample. (a) Overall structure; (b) 0°weft free fabric; (c) Carbon felt; (d) Acupuncture fibers; (e) 90°weft free fabric;(f) The bonding between fibers and matrix carbon

    图  5  2250-PR-1700试样的SEM图片。(a) 纤维与基体炭之间的结合;(b)碳毡; (c) 0°无纬布;(d)针刺纤维; (e) 90°无纬布; (f) 整体结构

    Figure  5.  SEM image of 2250-PR-1700 sample. (a) Overall structure; (b) 0°weft free fabric; (c) Carbon felt; (d) Acupuncture fibers; (e) 90°weft free fabric; (f) The bonding between fibers and matrix carbon

    图  6  经不同温度后热处理后C/C-SiC复合材料的XRD图谱

    Figure  6.  XRD patterns of C/C-SiC composites after heat treatment at different temperatures

    图  7  经不同温度后热处理后C/C-SiC复合材料XRD图谱的谱峰偏移:(a) SiC (111)晶面的谱峰偏移;(b) SiC (220) 晶面的谱峰偏移; (c) SiC (311) 晶面的谱峰偏移; (d) 石墨炭(002)晶面的谱峰偏移

    Figure  7.  The peak shift of the XRD spectrum of C/C-SiC composite material after heat treatment at different temperatures: (a) Spectral peak shift of SiC (111) crystal plane; (b) Spectral peak shift of SiC (220) crystal plane; (c) Spectral peak shift of SiC (311) crystal plane;(d) Spectral peak shift of graphite (002) crystal surface

    图  8  不同后热处理温度处理后C/C-SiC复合材料的拉曼Mapping图:(a) 2250-PR mapping图; (b) 2250-PR-1300 mapping图;(c) 2250-PR-1500 mapping图; (d) 2250-PR-1700 mapping图

    Figure  8.  Raman Mapping of C/C-SiC composite materials treated at different post heat treatment temperatures: (a) 2250-PR mapping diagram; (b) 2250-PR-1300 mapping diagram; (c) 2250-PR-1500 mapping diagram; (d) 2250-PR-1700 mapping diagram.

    图  9  2250-PR-1300、2250-PR-1500及2250-PR-1700弯曲试样断口的SEM图。(a) 和(b) 1300℃后热处理; (c) 和(d)1500℃后热处理; (e) 和(f)1700℃后热处理

    Figure  9.  SEM images of the fracture surface of 2250-PR-1300、2250-PR-1500 and 2250-PR-1700 bending specimens. (a) and (b) Heat treatment after 1300℃; (c) and (d) Heat treatment after 1500℃; (e) and (f) Heat treatment after 1700℃

  • [1] DUAN J, ZHANG M, CHEN P, et al. Tribological behavior and applications of carbon fiber reinforced ceramic composites as high-performance frictional materials[J]. Ceramics International, 2021, 47(14): 19271. doi: 10.1016/j.ceramint.2021.02.187
    [2] 虎琳, 肖志超, 张永辉. C/C-SiC炭陶复合材料的制备及应用进展[J]. 炭素, 2017, (2): 43-47.

    HU Lin, XIAO Zhichao, ZHANG Yonghui. Progress in Preparation and Application of C/C-SiC Carbon Ceramic Composite Materials[J]. Carbon, 2017, (2): 43-47(in Chinese).
    [3] NASLAIN R. SiC-matrix composites: nonbrittle ceramics for thermo-structural application[J]. International Journal of Applied Ceramic Technology, 2005, 2(2): 75-84. doi: 10.1111/j.1744-7402.2005.02009.x
    [4] 张波, 李瑞珍, 解惠贞. 熔融渗硅法制备C/C-SiC复合材料工艺参数研究[J]. 材料导报, 2015, (S1): 389-392+396.

    ZHANG Bo, LI Ruizhen, XIE Huizhen. Research of the parameter of liquid silicon in filtration process for C/C-SiCcomposites[J]. Materials Review, 2015, (S1): 389-392+396(in Chinese).
    [5] 徐永东, 张立同, 成来飞, 等. 碳/碳化硅摩阻复合材料的研究进展[J]. 硅酸盐学报, 2006, 34(8): 992-999.

    XU Y D, ZHANG L T, CHENG L F, et al. Research progress on carbon/silicon carbide friction composite[J]. Journal of the Chinese Ceramic Society, 2006, 34(8): 992-999(in Chinese).
    [6] JAYASEELAN D D, DE Sá R G, BROWN P, et al. Reactive infiltration processing (RIP) of ultra high temperature ceramics (UHTC) into porous C/C composite tubes[J]. Journal of the European Ceramic Society, 2011, 31(3): 361-368. doi: 10.1016/j.jeurceramsoc.2010.10.013
    [7] GUO W, XIAO H, YASUDA E, et al. Oxidation kinetics and mechanisms of a 2D-C/C composite[J]. Carbon, 2006, 44(15): 3269-3276. doi: 10.1016/j.carbon.2006.06.027
    [8] XU J, YANG T, YANG Y, et al. Ultra-high temperature oxidation behavior of micro-laminated ZrC/MoSi2 coating on C/C composite[J]. Corrosion Science, 2018, 132.
    [9] PATEL M, SAURABH K, PRASAD V V B, et al. High temperature C/C-SiC composite by liquid silicon infiltration: a literature review[J]. Bulletin of Materials Science, 2012, 35(1): 63-73. doi: 10.1007/s12034-011-0247-5
    [10] FLAUDER S, LANGHOF N, KRENKEL W. Tailored macro-pores during the formation of C/C-SiC via liquid phase pyrolysis[J]. Journal of the European Ceramic Society, 2020.
    [11] KUMAR S, RANJAN A, MANOCHA L M, et al. SiC-Based Composites Through Liquid Infiltration Routes [M]//MAHAJAN Y R, JOHNSON R. Handbook of Advanced Ceramics and Composites: Defense, Security, Aerospace and Energy Applications. Cham; Springer International Publishing. 2020: 831-875.
    [12] 姜娟, 李开元, 范尚武, 等. C/C多孔体的高温热处理对C/SiC复合材料结构及力学性能的影响[J]. 材料导报, 2013, 27(2): 86-88.

    JIANG Juan, LI Kaiyuan, FAN Shangwu, et al. The Effect of High Temperature Heat Treatment of C/C Porous Body on the Structure and Mechanical Properties of C/SiC Composite Materials[J]. Materials Reports, 2013, 27(2): 86-88(in Chinese).
    [13] LIU S H, ZHANG L T, YIN X W, et al. Microstructure and mechanical properties of SiC and carbon hybrid fiber reinforced SiC matrix composite[J]. International Journal of Applied Ceramic Technology, 2011, 8(2): 308-316. doi: 10.1111/j.1744-7402.2010.02588.x
    [14] 周新贵. PIP工艺制备陶瓷基复合材料的研究现状[J]. 航空制造技术, 2014, (6): 30-34.

    ZHOU X G. Research status of ceramic matrix composites via PIP process[J]. Aeronautical Manufacturing Technology, 2014, (6): 30-34(in Chinese).
    [15] GUO W, YE Y, BAI S, et al. Preparation and formation mechanism of C/C–SiC composites using polymer-Si slurry reactive melt infiltration[J]. Ceramics International, 2020, 46(5): 5586-5593. doi: 10.1016/j.ceramint.2019.11.002
    [16] SI Z J, XIANG X, ZHAO K C, et al. Influence factors of C/C–SiC dual matrix composites prepared by reactive melt infiltration[J]. Materials & Design, 2009, 30(9): 3738-3742.
    [17] JIN X, FAN X, LU C, et al. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites[J]. Journal of the European Ceramic Society, 2018, 38(1): 1-28. doi: 10.1016/j.jeurceramsoc.2017.08.013
    [18] TONG Y, BAI S, LIANG X, et al. Reactive melt infiltration fabrication of C/C-SiC composite: Wetting and infiltration[J]. Ceramics International, 2016, 42(15): 17174-17178. doi: 10.1016/j.ceramint.2016.08.007
    [19] 王林山, 熊翔, 肖鹏, 等. 高温热处理对C/C-SiC复合材料制备与力学性能的影响[J]. 新型炭材料, 2005, 20(3): 245-248.

    WANG Lin-shan, XIONG Xiang, XIAO Peng, et al. Effect of high temperature treatment on the fabrication and mechanical properties of C/C-SiC composites[J]. New Carbon Materials, 2005, 20(3): 245-248(in Chinese).
    [20] LI S, CHEN X, CHEN Z. The effect of high temperature heat-treatment on the strength of C/C to C/C-SiC joints[J]. Carbon, 2010, 48(11): 3042-3049. doi: 10.1016/j.carbon.2010.04.030
    [21] 王静. 近零膨胀C/C-SiC复合材料的反应烧结法制备及性能研究[D]. 长沙: 国防科学技术大学, 2013.

    WANG Jing. Preparation and Properties of Near-Zero Expansion C/C-SiC Composites by Reaction Bonding Technique[D]. Changsha : National University of Defense Technology, 2013(in Chinese).
    [22] 王秋野, 韩琳, 赵浛宇. C/SiC复合材料制备技术及应用现状[J]. 纤维复合材料, 2023, 40(1): 115-119.

    WANG Qiuye, HAN Lin, ZHAO Hanyu. Preparation Technology and Application Status of C/SiC Composite Materials[J]. Fiber composite materials, 2023, 40(1): 115-119 (in Chinese).
    [23] ZHANG L, REN C, JI C, et al. Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites[J]. Applied Surface Science, 2016, 366: 424-431. doi: 10.1016/j.apsusc.2016.01.142
    [24] 邱宇, 雷振坤, 亢一澜, 等. 微拉曼光谱技术及其在微结构残余应力检测中的应用[J]. 机械强度, 2004, (4): 389-392 doi: 10.3321/j.issn:1001-9669.2004.04.008

    QIU Yu, LEI Zhenkun, KANG Yilan, et al. Microraman spectroscopy and its Application in Residual Stress Detection of Microstructure[J]. Journal of Mechanical Strength, 2004, (4): 389-392(in Chinese). doi: 10.3321/j.issn:1001-9669.2004.04.008
  • 加载中
计量
  • 文章访问数:  107
  • HTML全文浏览量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2023-12-28
  • 录用日期:  2023-12-29
  • 网络出版日期:  2024-03-04

目录

    /

    返回文章
    返回