留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的负泊松比蜂窝的面内力学性能预测

马佩 张君华 权铁汉

马佩, 张君华, 权铁汉. 基于机器学习的负泊松比蜂窝的面内力学性能预测[J]. 复合材料学报, 2024, 41(7): 3806-3815.
引用本文: 马佩, 张君华, 权铁汉. 基于机器学习的负泊松比蜂窝的面内力学性能预测[J]. 复合材料学报, 2024, 41(7): 3806-3815.
MA Pei, ZHANG Junhua, QUAN Tiehan. Prediction of in-plane mechanical properties of auxetic honeycombs based onmachine learning[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3806-3815.
Citation: MA Pei, ZHANG Junhua, QUAN Tiehan. Prediction of in-plane mechanical properties of auxetic honeycombs based onmachine learning[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3806-3815.

基于机器学习的负泊松比蜂窝的面内力学性能预测

基金项目: 国家自然科学基金(12272057;12372004)
详细信息
    通讯作者:

    张君华,博士,教授,硕士生导师,研究方向为轻质超材料结构动力学 E-mail: zjhuar@163.com

  • 中图分类号: TB331

Prediction of in-plane mechanical properties of auxetic honeycombs based onmachine learning

Funds: National Natural Science Foundation of China (12272057; 12372004)
  • 摘要: 负泊松比蜂窝结构具有优良的力学性能,本文开发并对比了两种多输入多输出的人工神经网络模型(ANN),用于预测不同几何参数下负泊松比蜂窝结构的能量吸收特性。采用蜂窝胞元的胞角$\theta $、直壁长度与胞元高度之比$ L/H $和厚度$ t $作为ANN的输入,输出是蜂窝结构的初始峰值力、平台力和蜂窝结构的总能量吸收。验证集的误差全部在8%内,且验证集和测试集的平均相关系数R2都大于98.2%,说明神经网络可以获得良好的预测效果,这表明ANN有能力学习和捕捉将蜂窝的拓扑结构及其力学性能联系起来的潜在物理机制。开发的两种神经网络中,与ANN1相比,ANN2的网络参数更多,网络结构更复杂,有更好的预测精度和训练速度。通过对给定几何参数的蜂窝结构的力学性能进行快速预测得到了吸能高的蜂窝结构。建立了反向设计网络对蜂窝结构进行反向设计,发现网络对蜂窝结构的胞角$\theta $和壁厚$t$预测效果良好,对$ L/H $的预测效果相对较差,因为$ L/H $对初始峰值力、平台力和总能量吸收影响很小。此外进行了蜂窝几何参数的敏感度分析,结果表明蜂窝结构的几何参数对初始峰值力、平台力和总能量吸收的敏感度趋势一致,蜂窝胞元厚度$t$的敏感度最高,$ L/H $对能量的敏感度最低。对于敏感度高的参数反向设计网络预测效果好,反之敏感度低的参数预测效果相对较差。总之,ANN为蜂窝结构吸能性能的研究提供了一种快速准确的方法,有望加快蜂窝结构的优化和设计进程。

     

  • 图  1  内凹六边形蜂窝胞元的设计参数

    Figure  1.  Design parameters of concave hexagonal cellular cells

    $L$-Length of the straight wall; $H$-Height of the unit cell; ${\text{t}}$-Thickness of the unit cell; $\theta $- Cell angle

    图  2  蜂窝的有限元模型

    Figure  2.  Finite element model of the honeycomb

    图  3  本文模型与文献[31]比较

    Figure  3.  FEM model of this paper compared with literature [31]

    图  4  训练集的归一化

    图  5  神经网络的训练过程

    Figure  5.  Neural network training process

    图  6  初始峰值力和平台力的提取

    Figure  6.  Extraction of initial peak force and platform force

    图  7  两种多输入多输出网络的结构

    Figure  7.  Structure of two multiple-input multiple-output networks

    图  8  ANN网络的训练过程

    Figure  8.  Training process of ANN network

    图  9  ANN对验证集的预测效果

    Figure  9.  Prediction effect of ANN on the validation set

    图  10  测试集的预测值与真实值的对比图

    Figure  10.  Comparison of predicted and true values of the test set

    图  11  优化后的蜂窝结构及能量曲线

    Figure  11.  Optimized honeycomb structure and energy curve

    图  12  反向设计网络

    Figure  12.  Reverse designed networks

    图  13  参数敏感度分析

    Figure  13.  Parameter sensitivity analysis

    表  1  蜂窝结构参数及其取值范围

    Table  1.   Structural parameters and their value ranges for the data set

    Structural parameters Value range
    $\theta $/(°) 50-72
    $ L/H $ $ 2\sqrt 3 /3 - \sqrt 3 $
    $t$/mm 1-2
    下载: 导出CSV

    表  2  两种网络的预测效果对比

    Table  2.   Comparison of the prediction effects of the two networks

    R2(ANN1)R2(ANN2)
    Initial peak force0.992660.99278
    Platform force0.982250.99882
    Total energy0.998400.99854
    下载: 导出CSV

    表  3  反向设计网络的验证

    Table  3.   Verification of the reverse designed network

    1 Initial peak force Platform force Total energy Design parameters
    Target value 24000 7000 350000 $\theta $ 1.20
    Finite element value 24831 7278 365974 $L/H$ 1.25
    Error 3.46% 3.97% 4.56% $t$ 2.05
    2 Initial peak force Platform force Total energy Design parameters
    Target value 19000 4000 220000 $\theta $ 1.05
    Finite element value 18959 3966 216625 $L/H$ 1.54
    Error 0.216% 0.85 % 1.53% $t$ 1.76
    3 Initial peak force Platform force Total energy Design parameters
    Target value 15000 2600 150000 $\theta $ 1.02
    Finite element value 14415 2585 151943 $L/H$ 1.42
    Error 3.9% 0.58% 1.3% $t$ 1.48
    下载: 导出CSV
  • [1] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1-14. doi: 10.3901/JME.2018.13.001

    YU Jingjun, XIE Yan, PEI Xu. State-of-art metamaterials with negative Poisson’s ratio[J]. Journal of Mechanical Engineering, 2018, 54(13): 1-14(in Chinese). doi: 10.3901/JME.2018.13.001
    [2] JIANG Y l, SHI K, ZHOU L N, et al. 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc[J]. Bioactive Materials, 2022: 528-538.
    [3] ZHONG R, REN X, ZHANG X Y, et al. Mechanical properties of concrete composites with auxetic single and layered honeycomb structures[J]. Construction & Building Materials, 2022: 126453.
    [4] KRISHNAN B R, BISWAS A N, KUMAR K. V. A, et al. Auxetic structure metamaterial for crash safety of sports helmet[J]. Materials Today:Proceedings, 2022, 56: 1043-1049. doi: 10.1016/j.matpr.2021.09.110
    [5] BOHARA R P, LINFORTH S, NGUYEN T, et al. Dual-mechanism auxetic-core protective sandwich structure under blast loading[J]. Composite Structures, 2022, 299: 116088. doi: 10.1016/j.compstruct.2022.116088
    [6] 尤泽华, 肖俊华. 弧边内凹蜂窝负泊松比结构的面内冲击动力学数值研究[J]. 工程力学, 2022, 39(12): 248-256. doi: 10.6052/j.issn.1000-4750.2021.07.0572

    YOU Zehua, XIAO Junhua. Numerical study on in-plane impact dynamics of concave honeycomb structure with negative Poisson’s ratio[J]. Engineering Mechanics, 2022, 39(12): 248-256(in Chinese). doi: 10.6052/j.issn.1000-4750.2021.07.0572
    [7] 尤泽华, 肖俊华, 王美芬. 弧边内凹蜂窝负泊松比结构的力学性能[J]. 复合材料学报, 2022, 39(7): 3570-3580.

    YOU Zehua, XIAO Junhua, WANG Meifen. Mechanical properties of arc concave honeycomb structure with negative Poisson’s ratio[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3570-3580(in Chinese).
    [8] 刘旭畅, 李爽, 杨金水. 一种新型手性负泊松比结构的减振性能[J]. 复合材料学报, 2024, 41(1): 493-500.

    LIU Xuchang, LI Shuang, YANG Jinshui. Damping performance of a new chiral negative Poisson's ratio structure[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 493-500(in Chinese).
    [9] 韩广, 郄彦辉, 班宝旺. 新型斜十字负泊松比结构弹性力学性能研究[J]. 机械强度, 2023, 45(1): 183-189. doi: 10.16579/j.issn.1001.9669.2023.01.023

    HAN Guang, QIE Yanhui, BAN Baowang. Study on elastic and mechanical properties of new oblique cross negative Poisson's ratio structure[J]. Journal of Mechanical Strength, 2023, 45(1): 183-189(in Chinese). doi: 10.16579/j.issn.1001.9669.2023.01.023
    [10] 金泽华, 刘清洋, 马文朝, 等. 新型星形负泊松比抗冲击结构设计与入水冲击[J]. 兵工学报, 2022, 44: 1-18.

    JIN Zehua, LIU Qingyang, MA Wenchao, et al. Design of anti-impact structure with novel star-shaped negative poisson's ratio and research on water impact[J]. Journal of Ordnance Industry, 2022, 44: 1-18(in Chinese).
    [11] JIANG F, YANG S, ZHANG Y, et al. Fabrication and crushing response of graded re-entrant circular auxetic honeycomb[J]. International Journal of Mechanical Sciences, 2023, 242: 107999. doi: 10.1016/j.ijmecsci.2022.107999
    [12] ZHU Y L, LUO Y, GAO D F, et al. In-plane elastic properties of a novel re-entrant auxetic honeycomb with zigzag inclined ligaments[J]. Engineering Structures, 2022: 114788.
    [13] LI X, LIU Z L, CUI S Q, et al. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 735-753. doi: 10.1016/j.cma.2019.01.005
    [14] YU Y, HUR T, JUNG J, et al. Deep learning for determining a near-optimal topological design without any iteration[J]. Structural and Multidisciplinary Optimization, 2019, 59(3): 787-799. doi: 10.1007/s00158-018-2101-5
    [15] GUO K, YANG Z, YU C H, et al. Artificial intelligence and machine learning in design of mechanical materials[J]. Materials Horizons, 2021, 8(4): 1153-1172. doi: 10.1039/D0MH01451F
    [16] 李想, 严子铭, 柳占立, 等. 基于仿真和数据驱动的先进结构材料设计[J]. 力学进展, 2021, 51(1): 82-105.

    LI Xiang, YAN Ziming, LIU Zhanli, et al. Advanced structural material design based on simulation and data-driven method[J]. Progress in Mechanics, 2021, 51(1): 82-105(in Chinese).
    [17] ZHU L, ZHANG C, GUO J, et al. Deep learning for electromagnetically induced transparency (EIT) metasurface optimization design[J]. Journal of Physics D:Applied Physics, 2022, 55(31): 315001. doi: 10.1088/1361-6463/ac670f
    [18] 钱淼, 周骥, 向忠, 等. 基于深度学习的多孔材料渗透率预测研究进展[J]. 计算机集成制造系统, 2023, https://kns.cnki.net/kcms2/detail/11.5946.TP.20230712.1005.010.html.

    QIAN Miao, ZHOU Ji, XIANG Zhong, et al. Research progress of porous material permeability prediction based on deep learning[J]. Computer Integrated Manufacturing Systems, 2023, https://kns.cnki.net/kcms2/detail/11.5946.TP.20230712.1005.010.html. (in Chinese).
    [19] GU G X, CHEN C T, Buehler M J. De novo composite design based on machine learning algorithm[J]. Extreme Mechanics Letters, 2018, 18: 19-28. doi: 10.1016/j.eml.2017.10.001
    [20] WANG Y Z, ZENG Q L, WANG J Z, et al. Inverse design of shell-based mechanical metamaterial with customized loading curves based on machine learning and genetic algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 401: 115571. doi: 10.1016/j.cma.2022.115571
    [21] FONTES A, SHADMEHRI F. Data-driven failure prediction of fiber-reinforced polymer composite materials[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105834. doi: 10.1016/j.engappai.2023.105834
    [22] ZHANG H J, WANG Y, LU K Y, et al. SAP-Net: Deep learning to predict sound absorption performance of metaporous materials[J]. Materials & Design, 2021, 212: 110156.
    [23] TIAN J, TANG K K, CHEN X Y, et al. Machine learning-based prediction and inverse design of 2D metamaterial structures with tunable deformation-dependent Poisson's ratio[J]. Nanoscale, 2022, 14(35): 12677-12691. doi: 10.1039/D2NR02509D
    [24] GAO Y, CHEN X J, WEI Y J, Graded honeycombs with high impact resistance through machine learning-based optimization[J], Thin-Walled Structures, 2023, 188: 110794.
    [25] WANG H, XIAO S H, ZHANG C. Novel planar auxetic metamaterial perforated with orthogonally aligned oval-shaped holes and machine learning solutions[J]. Advanced Engineering Materials, 2021, 23(7): 2100102. doi: 10.1002/adem.202100102
    [26] ZHANG H J, WANG Y, ZHAO H G, et al. Accelerated topological design of metaporous materials of broadband sound absorption performance by generative adversarial networks[J]. Materials & Design, 2021, 207: 109855.
    [27] VYAVAHARE S V, TERAIYA S, KUMAR S. FDM manufactured auxetic structures: An investigation of mechanical properties using machine learning techniques[J]. International Journal of Solids and Structures, 2023: 112126.
    [28] LIAO Z Y, WANG Y J, Gao L, et al. Deep-learning-based isogeometric inverse design for tetra-chiral auxetics[J]. Composite Structures, 2022, 280: 114808. doi: 10.1016/j.compstruct.2021.114808
    [29] LIU J Y, LIU H T, Energy absorption characteristics and stability of novel bionic negative Poisson’s ratio honeycomb under oblique compression[J]. Engineering Structures, 2022, 267: 114682.
    [30] ZHANG X, ZHANG H, WEN Z Z. Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations[J]. International Journal of Impact Engineering, 2014, 66: 48-59. doi: 10.1016/j.ijimpeng.2013.12.009
    [31] HAMZEHEI R, ZOLFAGHARIAN A, DARIUSHI S, et al. 3D-printed bio-inspired zero Poisson’s ratio graded metamaterials with high energy absorption performance[J]. Smart Materials and Structures, 2022, 31(3): 035001. doi: 10.1088/1361-665X/ac47d6
    [32] 张晓楠, 晏石林, 欧元勋, 等. 负泊松比内凹蜂窝结构梯度设计与动态冲击响应[J]. 振动与冲击, 2023, 42(3): 193-198. doi: 10.13465/j.cnki.jvs.2023.03.023

    ZHANG Xiaonan, YAN Shilin, OU Yuanxun, et al. Gradient design and dynamic impact response of concave honeycomb structures with negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2023, 42(3): 193-198(in Chinese). doi: 10.13465/j.cnki.jvs.2023.03.023
    [33] HAGHIGHAT E, JUANES R. SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 373: 113552.
    [34] TAN H L, HE Z C, Li E, et al. Crashworthiness design and multi-objective optimization of a novel auxetic hierarchical honeycomb crash box[J]. Structural and Multidisciplinary Optimization, 2021, 64: 2009-24. doi: 10.1007/s00158-021-02961-9
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  150
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 修回日期:  2023-10-15
  • 录用日期:  2023-10-27
  • 网络出版日期:  2023-11-11
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回