留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚吡咯/壳聚糖-海藻酸钠复合微球的制备及其药物缓释性能

李莎 张新浩 贾睿 罗钰 邢建宇

李莎, 张新浩, 贾睿, 等. 聚吡咯/壳聚糖-海藻酸钠复合微球的制备及其药物缓释性能[J]. 复合材料学报, 2024, 41(7): 3758-3765.
引用本文: 李莎, 张新浩, 贾睿, 等. 聚吡咯/壳聚糖-海藻酸钠复合微球的制备及其药物缓释性能[J]. 复合材料学报, 2024, 41(7): 3758-3765.
LI Sha, ZHANG Xinhao, JIA Rui, et al. Preparation of polypyrrole/chitosan-sodium alginate composite microspheres and their slow-release properties[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3758-3765.
Citation: LI Sha, ZHANG Xinhao, JIA Rui, et al. Preparation of polypyrrole/chitosan-sodium alginate composite microspheres and their slow-release properties[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3758-3765.

聚吡咯/壳聚糖-海藻酸钠复合微球的制备及其药物缓释性能

基金项目: 陕西省教育厅科学研究计划项目资助(22JE003); 陕西省自然科学基础研究计划资助项目(No. 2020JM-226)
详细信息
    通讯作者:

    邢建宇(1979—),男,博士,副教授,主要从事环境友好材料的制备及应用。 E-mail: xingjy@chd.edu.cn

  • 中图分类号: TB332

Preparation of polypyrrole/chitosan-sodium alginate composite microspheres and their slow-release properties

Funds: Scientific Research Project supported by Shaanxi Provincial Education Department (22JE0030); Supported by Natural Science Basic Research Program of Shaanxi Province (No.2020JM-226)
  • 摘要: 开发新型药物控释复合材料在医药、农业等领域具有重要意义。以壳聚糖和海藻酸钠(CS-Alg)凝胶网络为载体,使用原位氧化法将聚吡咯(PPy)引入其中,制备出PPy/CS-Alg复合缓释材料。通过SEM、FT-IR、XPS、UV-vis-NIR对其微观结构、结构组成、光热转换性能进行了研究,并以吲哚丁酸(IBA)为模型药物分子,研究了其缓释性能。结果表明,PPy/CS-Alg微球的多孔微观形貌有利于IBA的装载和释放,原位氧化形成的氧化态PPy在CS-Alg凝胶网络可缓慢还原,并从带正电状态变为不带电状态,该种带电状态的改变,可促使IBA从PPy/CS-Alg微球的凝胶网络中缓慢释放,长效释放率可达到56.12%。另外基于PPy的光热效应,模拟太阳光照射下PPy/CS-Alg微球的温度可从26 ℃最高上升到39 ℃,这有利于在微球内部到外部形成温度梯度,进一步增强IBA的缓释能力。以PPy的缓慢还原和光热效应开发的植物生长素IBA控释材料在农业领域具有广阔的应用前景。

     

  • 图  1  CS-Alg(a, b, c)和PPy/CS-Alg(d, e, f)微球的样品外貌及SEM图

    Figure  1.  Photograph and SEM of CS-Alg (a, b, c) and PPy/CS-Alg (d,e,f) microspheres

    图  2  CS-Alg和PPy/CS-Alg微球的红外光谱图

    Figure  2.  FTIR spectra of CS-Alg and PPy/CS-Alg microspheres

    图  3  CS-Alg和PPy/CS-Alg微球的紫外-可见漫反射吸收光谱图

    Figure  3.  UV-VIS diffuse reflection absorption spectra of CS-Alg and PPy/CS-Alg microspheres

    图  4  CS-Alg和PPy/CS-Alg复合微球不同时刻下的红外热成像图

    Figure  4.  Infrared thermal imaging of CS-Alg and PPy/CS-Alg composite microspheres at different times

    图  5  不同含量PPy对IBA释放的影响

    Figure  5.  Effects of different content of PPy on IBA release

    图  6  PPy/CS-Alg在不同浓度亚硫酸钠溶液中的IBA释放 百分比

    Figure  6.  IBA release percentage of PPy/CS-Alg in different concentrations of Na2SO3 solutions

    图  7  光照条件下CS-Alg和PPy/CS-Alg复合微球IBA释放比较

    Figure  7.  IBA release comparation of CS-Alg and PPy/CS-Alg microspheres under light

    图  8  PPy/CS-Alg释放前后C1 s(a)、N1 s(b)、O1 s(c)的XPS分析

    Figure  8.  C1 s(a)、N1 s(b)、O1 s(c) XPS spectra of PPy/CS-Alg before and after release

    图  9  释放前后PPy/CS-Alg微球的Zeta电位图

    Figure  9.  Zeta potential diagram of PPy/CS-Alg microspheres before and after release

    图  10  释放前后PPy/CS-Alg微球的红外光谱

    Figure  10.  FTIR spectra of PPy/CS-Alg microspheres before and after release

  • [1] DUDLEY N, ALEXANDER S. Agriculture and biodiversity: A review[J]. Biodiversity, 2017, 18(2-3): 45-49. doi: 10.1080/14888386.2017.1351892
    [2] ZHAO M, ZHOU H, CHEN L, et al. Carboxymethyl Chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide[J]. Carbohydrate Polymers, 2020, 243: 116433. doi: 10.1016/j.carbpol.2020.116433
    [3] XU X, BAI B, WANG H, et al. A Near-Infrared and Temperature-Responsive Pesticide Release Platform through Core-Shell Polydopamine@PNIPAm Nanocomposites[J]. ACS applied materials & interfaces, 2017, 9(7): 6424-6432.
    [4] ABDULLAH T, OKAYO. 4D Printing of Body Temperature-Responsive Hydrogels Based on Poly(acrylic acid)with Shape-Memory and Self-Healing Abilities[J]. ACS applied bio materials, 2023, 10.1021.
    [5] GAO C, HYANG Q, LAN Q, et al. A user-friendly herbicide derived from photo-responsive supramolecular vesicles[J]. Nature communications, 2018, 9: 2967. doi: 10.1038/s41467-018-05437-5
    [6] CUI J, HUANG J, YAN Y, et al. Ferroferric oxide loaded near-infrared triggered photothermal microneedle patch for controlled drug release[J]. Journal of Colloid and Interface Science, 2022.
    [7] YANG, YANBO WU, JIANRONGBREMNER, et al. A multifunctional nanoplatform based on MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy[J]. Colloids and Surfaces, B. Biointerfaces, 2020, 185.
    [8] ARAFAE G, SABAAM W, MOHAMEDR R, et al. Preparation of biodegradable sodium alginate/carboxymethylchitosan hydrogels for the slow-release of urea fertilizer and their antimicrobial activity[J]. Reactive & functional polymers, 2022, 105243.
    [9] KESHVARDOOSTCHOKAMI M, MAJIDI M, ZAMAMANI A, et al. A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: Removal of nitrogen- containing pollutants[J]. Carbohydrate polymers, 2021, 273: 118625. doi: 10.1016/j.carbpol.2021.118625
    [10] VAKILI M, RAFATULLAH M, SALAMATINIA B, et al. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review[J]. Carbohydr Polym, 2014, 113: 115-130. doi: 10.1016/j.carbpol.2014.07.007
    [11] ZHANG Q, DU Y, YU M, et al. Controlled release of dinotefuran with temperature/pH - responsive chitosan-gelatin microspheres to reduce leaching risk during application[J]. Carbohydrate polymers, 2022, 277: 118880. doi: 10.1016/j.carbpol.2021.118880
    [12] JIANYU X, WENWEN D, JINGCHANG L, Jumei Huang. Photo/thermal response of polypyrrole-modified calcium alginate/gelatin microspheres based on helix-coil structural transition and the controlled release of agrochemicals[J]. Colloids and surfaces B:Biointerfaces, 2021, 204(3): 111776.
    [13] JIANYU X, BIN Y, YU S, et al. Selective removal of acid fuchsin fromaqueous solutions by rapid adsorption onto polypyrrole crosslinked cellulose/gelatin hydrogels[J]. Journal of Dispersion Science and Technology, 2019, 40(11): 1591-1599. doi: 10.1080/01932691.2018.1518147
    [14] ALIABADI R S, Mahmoodi N O. Synthesis and characterization of polypyrrole, polyaniline nanoparticles and their nanocomposite for removal of azo dyes[J]. Sunset Yellow and Congo Red. J. Clean. Prod, 2018, 179: 235-245.
    [15] BHAUMIK M, LESWIF T Y, MAITY A, et al. Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite[J]. Journal of Hazardous Materials, 2011, 186(1): 150-159. doi: 10.1016/j.jhazmat.2010.10.098
    [16] BHAUMIK M, MCRINDLE R, MAITY A. Efficient removal of congo red from aqueous solutions by adsorption onto interconnected polypyrrole–polyaniline nanofibres[J]. Chemical Engineering Journal, 2013, 228: 506-515. doi: 10.1016/j.cej.2013.05.026
    [17] LI Y, QIAN R. Electrochemical overoxidation of conducti ng polypyrrole nitrate film in aqueous solutions[J]. Electrochimica Acta, 2000, 45(11): 1727-1731. doi: 10.1016/S0013-4686(99)00392-8
    [18] KO C L, WU H Y, LIN Y S, et al. Modulating the release of proteins from aloaded carrier of alginate/gelatin porous spheres immersed in different solutions[J]. Biomed Mater Eng, 2017, 28(5): 515-529.
    [19] NIKOLOVA D, SIMEONOV M, TZACHEV C, et al. Polyelectrolyte complexes of chitosan and sodium alginate as drug delivery system for diclofenac sodium[J]. Polymer International, 2021, 10. 1002.
    [20] CHUANPING F, LI, et al. Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: Sorption capability and mechanism[J]. Chemosphere Environmental Toxicology & Risk Assessment, 2016, 163: 81-89.
    [21] G, SHINAN, ZHAO. Injectable in situ forming hydrogels of thermosensitive polypyrrole nanoplatforms for precisely synergistic photothermo-chemotherapy[J]. ACS Applied Materials & Interfaces, 2020, 10. 1021.
    [22] LIN Y, CUI X, BONTHA J, et al. Electrically controlled anion exchange based on polypyrrole and carbon nanotubes nanocomposite for perchlorate removal. [J/OL]. Environmental Science & Technology, 2006, 40(12): 4004-4009.
    [23] XING J, DANG W, LI J, et al. Photo/thermal response of polypyrrole-modified calcium alginate/gelatin microspheres based on helix-coil structural transition and the controlled release of agrochemicals[J]. Colloids and surfaces B:Biointerfaces, 2021, 204(3): 111776.
    [24] LEI C, WANG C, CHEN W, et al. Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium: removal efficacy and mechanisms[J]. Science of The Total Environment, 2020, 733: 139316. doi: 10.1016/j.scitotenv.2020.139316
    [25] HUANG T, LIU Q, HUANG H, et al. Fabrication and physical properties of gelatin/sodium alginate/hyaluronic acid composite wound dressing hydrogel[J]. Journal of Macromolecular Science. Pure and Applied Chemistry, 2014, 51(4): 318-325. doi: 10.1080/10601325.2014.882693
    [26] MOVASAGHI Z, REHMAN S, REHMAN I. Fourier transform infrared(FTIR)spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2008, 43(2): 134-179. doi: 10.1080/05704920701829043
  • 加载中
图(10)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  99
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-12
  • 录用日期:  2023-11-24
  • 网络出版日期:  2023-11-27
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回