留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强尼龙6复合材料的阴离子聚合反应注射成型工艺

周佳慧 李金焕 肖军 王显峰 任林林

周佳慧, 李金焕, 肖军, 等. 碳纤维增强尼龙6复合材料的阴离子聚合反应注射成型工艺[J]. 复合材料学报, 2021, 38(12): 4172-4179. doi: 10.13801/j.cnki.fhclxb.20210302.002
引用本文: 周佳慧, 李金焕, 肖军, 等. 碳纤维增强尼龙6复合材料的阴离子聚合反应注射成型工艺[J]. 复合材料学报, 2021, 38(12): 4172-4179. doi: 10.13801/j.cnki.fhclxb.20210302.002
ZHOU Jiahui, LI Jinhuan, XIAO Jun, et al. Anionic polymerization reaction injection molding process of carbon fiber reinforced nylon 6 composite[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4172-4179. doi: 10.13801/j.cnki.fhclxb.20210302.002
Citation: ZHOU Jiahui, LI Jinhuan, XIAO Jun, et al. Anionic polymerization reaction injection molding process of carbon fiber reinforced nylon 6 composite[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4172-4179. doi: 10.13801/j.cnki.fhclxb.20210302.002

碳纤维增强尼龙6复合材料的阴离子聚合反应注射成型工艺

doi: 10.13801/j.cnki.fhclxb.20210302.002
基金项目: 装备发展部装备预研共用技术(41422010403)
详细信息
    通讯作者:

    李金焕,副教授,硕士生导师,研究方向为热塑性复合材料及高性能树脂开发等  E-mail:jinhuan_nj@nuaa.edu.cn

  • 中图分类号: TB332

Anionic polymerization reaction injection molding process of carbon fiber reinforced nylon 6 composite

  • 摘要: 以己内酰胺为原料,自制己内酰胺钠(C10)、双酰化内酰胺-1,6-己二胺(C20)分别为引发剂和活化剂,首先对适用于反应注射成型技术(RIM)的尼龙6(PA6)阴离子聚合工艺进行探究。实验结果表明,提高引发剂浓度可提升聚合反应速率,转化率受影响并不明显,但分子量有所降低;而提高活化剂浓度,会导致聚合反应不完全;随着聚合温度的升高,反应速率明显加快,同时分子量增大,结晶度呈下降趋势。最终选取1.5 mol%的C10、1 mol%的C20,浸胶温度100℃、聚合温度180℃的工艺参数,利用自行研制的反应注射设备成功制备了单向碳纤维增强尼龙6 (CF/PA6)复合材料单向板,其沿纤维方向的拉伸强度可达974.2 MPa,弯曲强度达786.9 MPa。

     

  • 图  1  碳纤维增强尼龙6(CF/PA6)复合材料反应注射成型流程

    Figure  1.  Process of carbon/nylon 6 (CF/PA6) composite reaction injection molding

    图  2  不同己内酰胺钠(C10)浓度下聚合反应温度-时间关系

    Figure  2.  Temperature-time relationship of polymerization reaction under different sodium caprolactam (C10) concentrations

    图  3  不同C10浓度下聚合物PA6的转化率和特性黏数

    Figure  3.  Conversion rate and limiting viscosity number of polymers PA6 under different C10 concentrations

    图  4  双酰化内酰胺-1,6-己二胺(C20)结构式

    Figure  4.  Structure of activator diacyllactam-1,6-hexanediamine (C20)

    图  5  不同C20浓度下聚合反应温度-时间关系

    Figure  5.  Temperature-time relationship of polymerization reaction under different C20 concentrations

    图  6  不同C20浓度下聚合物PA6转化率

    Figure  6.  Conversion rate of polymers PA6 under different C20 concentrations

    图  7  不同聚合温度下聚合反应温度-时间关系

    Figure  7.  Temperature-time relationship of polymerization reaction at different polymerization temperatures

    图  8  不同聚合温度下聚合物PA6的转化率及特性黏数

    Figure  8.  Conversion rate and limiting viscosity number of polymers PA6 at different polymerization temperatures

    图  9  反应注射成型(RIM)法制得的CF/PA6复合材料平板

    Figure  9.  Carbon fiber reinforced PA6 composite plate by reaction injection molding (RIM)

    图  10  CF/PA6复合材料截面纤维分布SEM图像

    Figure  10.  SEM image of fiber distribution in CF/PA6 composite section

    图  11  CF/PA6复合材料拉伸断裂面SEM图像

    Figure  11.  SEM image of composite tensile fracture surface of CF/PA6 composite

    表  1  聚合实验配方

    Table  1.   Experimental formula of polymerization

    FormulationC10/mol%C20/mol%
    F1 1 1
    F2 1.5 1
    F3 2 1
    F4 2.5 1
    F5 1 1.5
    F6 1 2
    F7 1 2.5
    Notes: C10—Sodium caprolactam; C20—Diacyllactam-1, 6-hexamediamine.
    下载: 导出CSV

    表  2  不同聚合温度下聚合产物PA6结晶数据

    Table  2.   Crystallization data of polymerization products PA6 at different polymerization temperatures

    Polymerization temperature/℃Crystallization onset temperature/℃Crystallization termination temperature/℃Peak temperature/℃Crystallization enthalpy/(J·g-1)Crystallinity/ %
    160 179.4 164.7 171.6 61.69 26.82
    170 173.6 160.2 167.9 45.59 19.82
    180 180.9 165.2 172.8 48.92 21.27
    190 180.9 163.8 172.5 48.69 21.17
    下载: 导出CSV

    表  3  CF/PA6复合材料物理性质与力学性能

    Table  3.   Physical properties and mechanical properties of CF/PA6 composites

    Characterization of CF/PA6Value
    Conversion rate/% 96.43
    Liminting viscosity number/(mg·L-1) 83.24
    Crystallinity/% 24.82
    0° tensile strength/MPa 974.2
    90° tensile strength/MPa 20.46
    0° flexural strength/MPa 786.9
    90° flexural strength/MPa 38.55
    下载: 导出CSV
  • [1] 王玉洁, 黄明福, 陈晋南. 注射成型技术研究进展[J]. 广东化工, 2007, 34(2):31-33.

    WANG Yujie, HUANG Mingfu, CHEN Jinnan. Research progress of injection molding technology[J]. Guangdong Chemical Industry,2007,34(2):31-33(in Chinese).
    [2] 张玉龙. 高技术复合材料制备手册[M]. 北京: 国防工业出版社, 2003: 374-386.

    ZHANG Yulong. Handbook for the preparation of high-tech composites[M]. Beijing: National Defense Industry Press, 2003: 374-386(in Chinese).
    [3] 王有槐. 聚酰胺工程塑料的发展[J]. 工程塑料应用, 1993(2):52-56, 11.

    WANG Youhuai. Development of polyamide engineering plastics[J]. Application of Engineering Plastics,1993(2):52-56, 11(in Chinese).
    [4] 代芳, 吕召胜, 王金立, 等. 2015年我国热塑性工程塑料研究进展[J]. 工程塑料应用, 2016, 44(3):125-134.

    DAI Fang, LV Zhaosheng, WANG Jinli, et al. Research progress of thermoplastic engineering plastics in China in 2015[J]. Application of Engineering Plastics,2016,44(3):125-134(in Chinese).
    [5] RJJSWIJK K V, BERSEE H E N. Reactive processing of textile fiber-reinforced thermoplastic composites-An overview[J]. Composites Part A: Applied Science & Manufacturing,2007,38(3):666-681.
    [6] RIJSWIJK K V, BERSEE H E N, JAGER W F, et al. Optimisation of anionic polyamide-6 for vacuum infusion of thermoplastic composites: Influence of polymerisation temperature on matrix properties[J]. Polymer Testing,2006,37(6):949-956.
    [7] CHEN K, JIA M, HUA S, et al. Optimization of initiator and activator for reactive thermoplastic pultrusion[J]. Journal of Polymer Research,2019,26(2):40.
    [8] 阚泽, 刘正英, 张凯, 等. 真空导入成型阴离子聚合尼龙6聚合体系及性能[J]. 高等学校化学学报, 2012, 33(8):1866-1871.

    KAN Ze, LIU Zhengying, ZHANG Kai, et al. Polymerization system and properties of anionic polyamide 6 polymerized in vacuum[J]. Acta Chemistry Sinica,2012,33(8):1866-1871(in Chinese).
    [9] LEE J, LIM J W, KIM M. Effect of thermoplastic resin transfer molding process and flame surface treatment on mechanical properties of carbon fiber reinforced polyamide 6 composite[J]. Polymer Composites,2020,41:25445.
    [10] 杨凡, 高远博, FREDRICK N M, 等. 原位聚合制备碳纤维增强MC尼龙6复合材料及其性能表征[J]. 材料开发与应用, 2018, 33(5):90-95.

    YANG F, GAO Y B, FREDRICK N M, et al. Preparation and characterization of carbon fiber reinforced MC nylon 6 Composites by in situ polymerization[J]. Materials Development and Application,2018,33(5):90-95(in Chinese).
    [11] 孙华, 薛平, 陈轲, 等. RTM成型玻璃纤维增强阴离子聚合尼龙6复合材料及其性能研究[J]. 复合材料学报, 2021, 38(2):414-423.

    SUN Hua, XUE Ping, CHEN Ke, et al. Study on preparation and properties of glass fiber-reinforced anionic nylon 6 composites by RTM process[J]. Acta Materiae Compositae Sinica,2021,38(2):414-423(in Chinese).
    [12] ZALDUA, MAIZ, CALLE D L, et al. Nucleation and crystallization of PA6 composites prepared by T-RTM: Effects of carbon and glass fiber loading[J]. Polymers,2019,11(10):1680. doi: 10.3390/polym11101680
    [13] CHEN K, JIA M Y, SUN H, et al. Thermoplastic reaction injection pultrusion for continuous glass fiber-reinforced polyamide-6 composites[J]. Materials,2019,12(3):463. doi: 10.3390/ma12030463
    [14] 张嘉阳, 刘刚, 李龙, 等. 国产CCF300碳纤维单向织物液体成型工艺性及其复合材料力学性能[J]. 复合材料学报, 2016, 33(1):17-26.

    ZHANG Jiayang, LIU Gang, LI Long, et al. Liquid forming process and mechanical properties of domestic CCF300 carbon fiber unidirectional fabric[J]. Acta Composite Materials Sinica,2016,33(1):17-26(in Chinese).
    [15] 尹兆旭. 碳纤维单向布加固混凝土技术在旧桥改建中的应用[J]. 公路, 2001(12):45-47.

    YIN Zhaoxu. Application of CFRP unidirectional reinforcement concrete technology in old bridge reconstruction[J]. Highway,2001(12):45-47(in Chinese).
    [16] 蔡正杰. 超大风力发电叶片用碳纤维单向织物[P]. 中国, CN202786636 U, 2013-03-13.

    CAI Zhengjie. Unidirectional carbon fiber fabric for super large wind turbine blades[P]. China, CN202786636 U, 2013-03-13(in Chinese)
    [17] 中国国家标准化管理委员会. "塑料 聚酰胺 第1部分: 黏数测定." GB/T 12006.1—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. "Plastics polyamides Part 1: Determination of viscosity number." GB/T 12006.1—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [18] ASTM. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M[S]. West Conshohocken: American Society for Testing and Materials International, 2013.
    [19] ASTM. Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264/D7264M[S]. West Conshohocken: American Society for Testing and Materials International, 2015.
    [20] ZHILKOVA K, MATEVA R, KYULAVSKA M. Copolymers of ε-caprolactam and polypropylene oxide via anionic polymerization: Synthesis and properties[J]. Journal of Polymer Research,2017,24(10):162-172. doi: 10.1007/s10965-017-1324-2
    [21] BOLGOV S A, BEGISHEV V P, MALKIN A Y, et al. Role of the functionality of activators during isothermal crystallization accompanying the activated anionic polymerization of ϵ-caprolactam[J]. Polymer Science U.s.s.r,1981,23(6):1485-1492. doi: 10.1016/0032-3950(81)90118-0
    [22] 陈轲. 玻纤增强尼龙复合材料反应注射拉挤成型的研究[D]. 北京: 北京化工大学, 2019.

    CHEN Ke. Study on reaction injection pultrusion of glass fiber reinforced polyamide-6 composites[D]. Beijing: Beijing University of Chemical Technology, 2019(in Chinese).
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1160
  • HTML全文浏览量:  528
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 录用日期:  2021-02-10
  • 网络出版日期:  2021-03-02
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回