留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含硅-氮木质素协同聚磷酸铵阻燃聚乳酸

宋艳 林肯 周宇彤 单雪影 李锦春 赵彩霞

宋艳, 林肯, 周宇彤, 等. 含硅-氮木质素协同聚磷酸铵阻燃聚乳酸[J]. 复合材料学报, 2024, 41(7): 3548-3560.
引用本文: 宋艳, 林肯, 周宇彤, 等. 含硅-氮木质素协同聚磷酸铵阻燃聚乳酸[J]. 复合材料学报, 2024, 41(7): 3548-3560.
SONG Yan, LIN Ken, ZHOU Yutong, et al. Synergistic flame retardant effect of lignin containing silicon-nitrogen with ammonium polyphosphate on polylactic acid[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3548-3560.
Citation: SONG Yan, LIN Ken, ZHOU Yutong, et al. Synergistic flame retardant effect of lignin containing silicon-nitrogen with ammonium polyphosphate on polylactic acid[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3548-3560.

含硅-氮木质素协同聚磷酸铵阻燃聚乳酸

基金项目: 国家自然科学基金 (51473024);江苏省科技厅产学研联合创新资金资助项目(BY2019080)
详细信息
    通讯作者:

    宋 艳,博士,副教授,硕士生导师,研究方向为生物基阻燃高分子材料 E-mail: ysong@cczu.edu.cn

  • 中图分类号: TQ317.9;TB332

Synergistic flame retardant effect of lignin containing silicon-nitrogen with ammonium polyphosphate on polylactic acid

Funds: National Natural Science Foundation of China (51473024);Industry-academic joint innovative fund of Jiangsu Province (BY2019080)
  • 摘要: 聚乳酸(PLA)作为生物基可降解塑料逐渐成为研究热点,但由于其极易燃烧,在包装、电器等领域的应用受到限制,为了解决此类问题,对碱木质素(Lig)改性合成了含硅-氮元素的木质素(Si-NLig),通过热失重分析(TGA)发现,Si-NLig在空气中的T5%提高了20 ℃,且高温残留量由2.3%提高至25.5%。将 Si-NLig作为成炭剂,与聚磷酸铵(APP)复配,通过熔融共混法制成阻燃聚乳酸材料(Si-NLig-APP/PLA),对其阻燃性能、力学性能、燃烧行为等进行了研究。研究表明,Si-NLig与APP质量比为1∶4,10wt%的添加量可使Si-NLig-8%APP/PLA的极限氧指数(LOI)值达到27%,UL-94垂直燃烧达到V-0级别,而同等条件下Lig-8%APP/PLA的LOI值为26%,UL-94仅为V-2级别。同时,与Lig-8%APP/PLA相比,Si-NLig-8%APP/PLA的热释放速率峰值(PHRR)降低了27%;残炭的拉曼光谱分析发现Si-NLig-8%APP/PLA的石墨化程度比Lig-8%APP/PLA提高了36.7%,为其良好的阻燃性能提供了理论依据。Si-NLig的引入使得阻燃PLA力学性能得到了改善,拉伸强度提升了21%。可见Si-NLig在无卤阻燃PLA领域中具有潜在的应用前景。

     

  • 图  1  Si-NLig的合成路线图

    Figure  1.  Synthetic route of Si-NLig

    图  2  Lig和Si-NLig的红外光谱

    Figure  2.  FTIR spectra of Lig and Si-NLig

    图  3  Lig和Si-NLig的XPS谱图

    Figure  3.  XPS spectra of Lig and Si-NLig

    图  4  Lig和Si-NLig空气氛围下的TG(a)和DTG(b)曲线

    Figure  4.  TG (a) and DTG (b) curves of Lig and Si-NLig in air

    图  5  Lig和Si-NLig氮气氛围下的TG(a)和DTG(b)曲线

    Figure  5.  TG (a) and DTG (b) curves of Lig and Si-NLig in N2

    图  6  PLA(a, b)、Lig-8%APP/PLA(c, d)、10%APP/PLA(e, f)、Si-NLig-8%APP/PLA(g, h)、 Si-NLig-12%APP/PLA(i, j)和Si-NLig-16%APP/PLA(k, l)的冲击横截面SEM

    Figure  6.  SEM of fracture surface of PLA(a, b), Lig-8%APP/PLA(c, d), 10%APP/PLA(e, f), Si-NLig-8%APP/PLA(g, h), Si-NLig-12%APP/PLA (i, j) and Si-NLig-16%APP/PLA (k, l)

    图  7  PLA和阻燃PLA空气氛围下的TG(a)和DTG(b)曲线

    Figure  7.  TG (a) and DTG (b) curves of PLA and flame retardant PLA in air

    图  8  PLA和阻燃PLA的HRR(a)、THR(b)、COP(c)和TSR(d)曲线

    Figure  8.  HRR (a), THR (b), COP (c), TSR (d) curves of PLA and flame retardant PLA

    图  9  Lig-8%APP/PLA和Si-NLig-8%APP/PLA炭层的拉曼光谱

    Figure  9.  Raman spectra of Lig-8%APP/PLA and Si-NLig-8%APP/PLA char layers

    表  1  PLA和阻燃PLA配方

    Table  1.   Formulations of PLA and flame retardant PLA

    Sample PLA /
    wt%
    APP /
    wt%
    Lig /
    wt%
    Si-NLig /
    wt%
    PLA 100 0 0 0
    10%APP/PLA 90 10 0 0
    Lig-8%APP/PLA 90 8 2 0
    Si-NLig-6.4%APP/PLA 92 6.40 0 1.60
    Si-NLig-3.33%APP/PLA 90 3.33 0 6.67
    Si-NLig-6%APP/PLA 90 6 0 4
    Si-NLig-6.67%APP/PLA 90 6.67 0 3.33
    Si-NLig-8%APP/PLA 90 8 0 2
    Si-NLig-12%APP/PLA 85 12 0 3
    Si-NLig-16%APP/PLA 80 16 0 4
    Notes: PLA- Polylactic acid; APP - Ammonium polyphosphate.
    下载: 导出CSV

    表  2  Lig和Si-NLig的元素组成

    Table  2.   Element contents of Lig and Si-NLig obtained by XPS

    SampleC / (At.%)O / (At.%)N / (At.%)Si / (At.%)
    Lig81.1618.410.43--
    Si-NLig80.1615.811.281.45
    下载: 导出CSV

    表  3  Lig和Si-NLig空气氛围下的热降解参数

    Table  3.   Thermal degradation parameters of Lig and Si-NLig in air

    Sample T5% / ℃ Tmax / ℃ Vmax / (%·min−1) Residue at 550℃/ %
    Tmax1 Tmax2 Tmax3 Vmax1 Vmax2 Vmax3
    Lig 212 270 371 500 2.8 4.0 15.9 2.3
    Si-NLig 232 317 474 556 7.5 5.4 5.3 25.5
    Notes: T5% - Temperature corresponding to mass loss 5% of material; Tmax - Temperature corresponding to the maximum thermal degradation rate; Vmax - Degradation rate at the maximum degradation temperature.
    下载: 导出CSV

    表  4  Lig和Si-NLig氮气氛围下的热失重参数

    Table  4.   Thermal degradation parameters of Lig and Si-NLig in N2

    Sample T5% / ℃ Tmax / ℃ Vmax / (%·min−1) Residue at 700℃ / %
    Lig 222 350 5.5 41.3
    Si-NLig 228 377 3.7 48.6
    Notes: T5% - Temperature corresponding to mass loss 5% of material; Tmax - Temperature corresponding to the maximum thermal degradation rate; Vmax - Degradation rate at the maximum degradation temperature.
    下载: 导出CSV

    表  5  PLA和阻燃PLA阻燃性能测试结果

    Table  5.   Results of flame retardant performances for PLA and flame retardant PLA

    SampleLOI / %UL-94 vertical burning
    t1 / st2 / sRatingDrippingIgnition cotton
    PLA19.5>60--NRYESYES
    10%APP/PLA2821V-0YESNO
    Lig-8%APP/PLA2652V-2YESYES
    Si-NLig-6.4%APP/PLA2731V-2YESYES
    Si-NLig-3.33%APP/PLA2561V-2YESYES
    Si-NLig-6%APP/PLA2797V-2YESYES
    Si-NLig-6.67%APP/PLA2740V-2YESYES
    Si-NLig-8%APP/PLA2720V-0YESNO
    Si-NLig-12%APP/PLA2810V-0YESNO
    Si-NLig-16%APP/PLA3000V-0YESNO
    Notes: t1/ t2 - Duration of sample burning; LOI - Limiting oxygen index.
    下载: 导出CSV

    表  6  PLA和阻燃PLA力学性能测试结果

    Table  6.   Test results of mechanical properties of PLA and flame retardant PLA

    Sample Tensile strength
    / MPa
    Elongation at break
    / %
    Impact strength
    / (kJ·m-2)
    PLA 70.0±4.6 14.2±0.9 5.6±0.3
    10%APP/PLA 39.8±1.1 10.7±1.4 4.5±0.1
    Lig-8%APP/PLA 51.9±2.9 9.9±0.7 4.7±0.4
    Si-NLig-8%APP/PLA 62.8±3.1 8.3±1.1 5.5±0.4
    Si-NLig-12%APP/PLA 65.8±4.3 8.1±0.6 4.5±0.1
    Si-NLig-16%APP/PLA 49.1±3.9 8.0±0.6 3.8±0.5
    下载: 导出CSV

    表  7  PLA和阻燃PLA空气氛围下的热降解参数

    Table  7.   Thermal degradation parameters of PLA and flame retardant PLA in air

    Sample T5% / ℃ Tmax / ℃ Vmax / (%·min−1) Residue at 800℃ / %
    PLA 337 371 65.7 0
    Lig-8%APP/PLA 335 372 59.4 8.4
    Si-NLig-8%APP/PLA 337 368 61.3 8.4
    Notes: T5% - Temperature corresponding to mass loss 5% of material; Tmax - Temperature corresponding to the maximum thermal degradation rate; Vmax - Degradation rate at the maximum degradation temperature.
    下载: 导出CSV

    表  8  PLA和阻燃PLA的锥形量热仪测试分析结果

    Table  8.   Cone calorimeter testing analysis results of PLA and flame retardant PLA

    Sample TTI / s TPHRR / s PHRR /
    (kW·m−2)
    MHRR /
    (kW·m−2)
    THR /
    (MJ·m−2)
    FPI /
    (m2s·kW−1)
    Mean COY /
    (kg·kg−1)
    Mean CO2Y /
    (kg·kg−1)
    PLA 74 200 411 137.4 79.9 0.158 0.024 4.803
    Lig-8%APP/PLA 61 150 356 97.6 45.7 0.171 0.080 4.162
    Si-NLig-8%APP/PLA 58 110 269 99.7 48.5 0.216 0.054 4.231
    Notes: TTI - Time to ignition; PHRR - Peak heat release rate; THR - Total heat release; TSR - Total smoke release; MHRR - Mean heat release rate.
    下载: 导出CSV

    表  9  Lig-8%APP/PLA和Si-NLig-8%APP/PLA炭层的拉曼光谱分析结果

    Table  9.   Raman spectroscopic analysis results of residual carbon in Lig-8%APP/PLA and Si-NLig-8%APP/PLA

    SampleADAGAD/AG
    Lig-8%APP/PLA10243273.13
    Si-NLig-8%APP/PLA12906511.98
    下载: 导出CSV
  • [1] DENG S, BAI H Z, LIU Z W, et al. Toward supertough and heat-resistant stereocomplex-type Polylactide/elastomer blends with impressive melt stability via in situ formation of graft copolymer during one-pot reactive melt blending[J]. Macromolecules, 2019, 52(4): 1718-1730. doi: 10.1021/acs.macromol.8b02626
    [2] SHI W Y, CHEN Z Z. Mechanical, rheological, and crystallinity properties of polylactic acid/polyethylene glycol-polydimethylsiloxane copolymer blends by melt blending[J]. Journal of Applied Polymer Science, 2022, 140(4): 1-11.
    [3] Makovicka L O , Katarina K , Hua S L , et al. Ignition and burning of selected tree species from tropical and northern temperate zones[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6 (2): 195-202.
    [4] 于文灏. 聚乳酸/含磷阻燃剂共混物的制备及性能研究 [D]. 江南大学, 2022.

    YU Wenhao. Preparation and properties of polylactic acid/phosphorus containing flame retardant blends [D]. Jiangnan University, 2022(in Chinese).
    [5] YANG W J, ZHOU Q K, PAN W H, et al. Synthesis of vanillin-based porphyrin for remarkably enhancing the toughness, UV-resistance and self-extinguishing properties of polylactic acid[J]. Chemical Engineering Journal, 2023, 469: 143935. doi: 10.1016/j.cej.2023.143935
    [6] 王自博, 吕锦翔, 肖丹. 基于生物材料阻燃PLA研究进展[J]. 塑料科技, 2022, 50(07): 96-100. doi: 10.15925/j.cnki.issn1005-3360.2022.07.020

    WANG Zibo, LU Jinxiang, XIAO Dan. Research progress in flame retardant PLA based on biomaterials[J]. Plastics Science and Technology, 2022, 50(07): 96-100(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2022.07.020
    [7] ZHANG D H, PEI M, WEI K, et al. Flame retardant properties and mechanism of polylactic acid-conjugated flame retardant composites[J]. Frontiers in Chemistry, 2022, 10: 894112. doi: 10.3389/fchem.2022.894112
    [8] WANG C, WU Y C, LI Y C, et al. Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant[J]. Polymers for Advanced Technologies, 2018, 29(1): 668-676. doi: 10.1002/pat.4105
    [9] ORTA O R, WESSEELINK A K, BETHEA T N, et al. Brominated flame retardants and organochlorine pesticides and incidence of uterine leiomyomata: A prospective ultrasound study[J]. Environmental Epidemiology, 2021, 5(1): e127. doi: 10.1097/EE9.0000000000000127
    [10] 贝钰, 翁述贤, 贾普友, 等. 木质素基阻燃剂的研究进展[J]. 生物质化学工程, 2023, 57 (02): 71-78.

    BEI Jue, WENG Shuxian, JIA Puyou, etc. Research progress of lignin based flame retardants[J]. Biomass Chemical Engineering, 2023, 57 (02): 96-100 (in Chinese).
    [11] ZHAN Y Y, WU X J, WANG S S, et al. Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid[J]. Polymer Degradation and Stability, 2021, 191: 109684. doi: 10.1016/j.polymdegradstab.2021.109684
    [12] 靳昕怡, 窦娟, 魏丽菲, 等. 无卤阻燃剂在聚合物阻燃中的应用研究进展[J]. 高科技纤维与应用, 2022, 47(6): 67-73. doi: 10.3969/j.issn.1007-9815.2022.06.011

    JIN Xinyi, DOU Juan, WEI Lifei, et al. Research on the application of halogen-free flame retardant in polymer flame retardants[J]. Hi-Tech Fiber and Application, 2022, 47(6): 67-73(in Chinese). doi: 10.3969/j.issn.1007-9815.2022.06.011
    [13] 王菁, 陈蕾, 李圣军, 等. 添加型阻燃剂的研究进展与发展趋势[J]. 合成纤维工业, 2022, 45(5): 69-74. doi: 10.3969/j.issn.1001-0041.2022.05.013

    WANG Jing, CHEN Lei, LI Shengjun, et al. Research progress and development trend of additive flame retardants[J]. China Synthetic Fiber Indutry, 2022, 45(5): 69-74(in Chinese). doi: 10.3969/j.issn.1001-0041.2022.05.013
    [14] Federico U , Carlo B , Martina R , et al. Synthesis of sustainable flame retarded polypropylene by using waste material[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6 (2): 165-171.
    [15] 王丽琼, 李立影, 梁洁, 等. 三嗪和磷腈阻燃剂作碳源阻燃聚乳酸复合材料的性能研究[J]. 安全与环境学报, 2021, 21(03): 1040-1047. doi: 10.13637/j.issn.1009-6094.2019.1640

    WANG Liqiong, LI Liying, LIANG Jie, et al. Effect to be gained by using the triazine and phosphazene flame retardants as carbon sources on the properties of polylactic acid[J]. Journal of Safety and Environment, 2021, 21(03): 1040-1047(in Chinese). doi: 10.13637/j.issn.1009-6094.2019.1640
    [16] YAO Z Y, QIAN L J, QIU Y, et al. Flame retardant and toughening behaviors of bio-based DOPO-containing curing agent in epoxy thermoset[J]. Polymers for Advanced Technologies, 2020, 31(3): 461-471. doi: 10.1002/pat.4782
    [17] MA D, LI J. Synthesis of a bio-based triazine derivative and its effects on flame retardancy of polypropylene composites[J]. Journal of Applied Polymer Science, 2020, 137(1): 245-253.
    [18] 白毓黎, 白富栋, 张通等. 木质素基阻燃剂制备的研究进展[J]. 当代化工, 2020, 49(10): 2314-2317. doi: 10.3969/j.issn.1671-0460.2020.10.049

    BAI Yuli, BAI Fudong, ZHANG Tong, etc. Research progress of lignin-based flame retardant[J]. Contemporary Chemical Industry, 2020, 49(10): 2314-2317(in Chinese). doi: 10.3969/j.issn.1671-0460.2020.10.049
    [19] XIA Y R, CAI W H , LIU Y H, et al. Facile fabrication of starch-based, synergistic intumescent and halogen-free flame retardant strategy with expandable graphite in enhancing the fire safety of polypropylene[J]. Industrial Crops & Products, 2022, 184: 115002.
    [20] ZHANG L Y, XUE W, GU L M. Study on properties and application of pyrophosphate flame retardant microcapsules prepared from hemicellulose maleate[J]. Cellulose, 2020, 27(7): 3931-3946. doi: 10.1007/s10570-020-03045-5
    [21] WANG M T, YIN G Z, YANG Y, et al. Bio-based flame retardants to polymers: A review[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6(2): 132-155. doi: 10.1016/j.aiepr.2022.07.003
    [22] CARVALHO R M, SILVA D P S R, VEIGA S R N, et al. The influence of montmorillonite on the flame-retarding properties of intumescent bio-based PLA composites[J]. Journal of Applied Polymer Science, 2022, 139(22): 52243. doi: 10.1002/app.52243
    [23] YANG H T, YU B, XU X D, et al. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials[J]. Green Chemistry, 2020, 22: 2129-2161. doi: 10.1039/D0GC00449A
    [24] ZHANG R, XIAO X F, TAI Q L. Modification of lignin and its application as char agent in intumescent flame-retardant poly(lactic acid)[J]. Polymer engineering and science, 2012, 52(12): 2620-2626. doi: 10.1002/pen.23214
    [25] 中国国家标准化管理委员会. 塑料 用氧指数法测定燃烧行为, GB/T2406-2008[S]. 北京, 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics determination of combustion behavior using the oxygen index method, GB/T2406-2008 [S]. beijing, China Standards Press, 2008(in Chines).
    [26] 中国国家标准化管理委员会. 塑料 燃烧性能的测定 水平法和垂直法, GB/T 2408-2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People's Republic of China. Determination of burning properties of plastics-horizontal and vertical methods, GB/T 2408-2021 [S]. Beijing: China Standards Press, 2021(in Chinese).
    [27] ISO. Reaction-to-fire tests-Heat release, smoke production and mass loss rate−part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660-1: 2015 [S]. Geneva: ISO, 2015.
    [28] 中国国家标准化管理委员会. 塑料拉伸性能的测定第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2−2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics-determination of tensile properties-part 2: test conditions for moulding and extrusion plastics: GB/T 1040.2−2006 [S]. Beijing: China Standards Press, 2006(in Chinese).
    [29] 中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843−2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics−determination of izod impact strength: GB/T 1843−2008 [S]. Beijing: China Standards Press, 2008(in Chinese).
    [30] 杨晓涵, 宋艳, 林肯等. 木质素基成炭剂的制备及在膨胀阻燃聚丙烯的应用[J]. 高分子材料科学与工程, 2022, 38(12): 39-46. doi: 10.16865/j.cnki.1000-7555.2022.0270

    YANG Xiaohan, SONG Yan, LIN Ken, etc. Preparation of lignin-based char-forming agent and its application in intumescent flame retardant polypropylene[J]. Polymer Materials Science and Engineering, 2022, 38(12): 39-46(in Chinese). doi: 10.16865/j.cnki.1000-7555.2022.0270
    [31] OTT M W, DIETZ C, TROSIEN S, et al. Co-curing of epoxy resins with aminated lignins: insights into the role of lignin homo crosslinking during lignin amination on the elastic properties[J]. Holzforschung, 2021, 75(4): 390-398. doi: 10.1515/hf-2020-0060
    [32] YANG H C, PU H T, GONG F H. Preparation of poly (methyl methacrylate)-grafted attapulgite by surface-Initiated radical polymerization[J]. Journal of Applied Polymer Science, 2014, 131(22): 1725-1730.
    [33] SONG Y, LI J C, YAN N, et al. Preparation of γ-divinyl-3-aminopropyltriethoxysilane modified lignin and its application in flame retardant poly(lactic acid)[J]. Materials, 2018, 11(9): 1505. doi: 10.3390/ma11091505
    [34] 吴迪超, 陈超, 侯兴隆等. 热解温度对纤维素和木质素成炭结构的影响[J]. 生物质化学工程, 2021, 55(03): 1-9. doi: 10.3969/j.issn.1673-5854.2021.03.001

    WU Dichao, CHEN Chao, HOU Xinglong, etc. Effect of pyrolysis temperature on structures of chars forming from cellulose and lignin[J]. Biomass Chemical Engineering, 2021, 55(03): 1-9(in Chinese). doi: 10.3969/j.issn.1673-5854.2021.03.001
    [35] HU X, SUN J H, LI X, et al. Effect of phosphorus-nitrogen compound on flame retardancy and mechanical properties of polylactic acid[J]. Journal of Applied Polymer Science, 2021, 138(7): 49829. doi: 10.1002/app.49829
    [36] 王楠, 宋艳, 李锦春等. 含磷木质素基成炭剂的合成及在阻燃聚丙烯中的应用[J]. 高分子材料科学与工程, 2018, 34(04): 7-13.

    WANG Nan, SONG Yan, LI Jinchun, etc. Synthesis of lignin-based charring agent containing phosphorus and its application in flame retardant polypropylene[J]. Polymer Materials Science and Engineering, 2018, 34(04): 7-13(in Chinese)
    [37] JIA L J, HUANG W Z, ZHAO Y J, et al. Ultra-light polylactic acid/combination composite foam: a fully biodegradable flame retardant material[J]. International journal of biological macromolecules, 2022, 220: 754-765. doi: 10.1016/j.ijbiomac.2022.08.093
  • 加载中
图(9) / 表(9)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  69
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-21
  • 修回日期:  2023-11-22
  • 录用日期:  2023-11-24
  • 网络出版日期:  2023-12-09
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回