留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒径可控型中空介孔SiO2基纳米药物载体材料的设计与性能

尹城武 陈雨鑫 王钰杰 朱德会 尹付琳 成琳 赵宇 周国永

尹城武, 陈雨鑫, 王钰杰, 等. 粒径可控型中空介孔SiO2基纳米药物载体材料的设计与性能[J]. 复合材料学报, 2024, 41(6): 3186-3196. doi: 10.13801/j.cnki.fhclxb.20230926.003
引用本文: 尹城武, 陈雨鑫, 王钰杰, 等. 粒径可控型中空介孔SiO2基纳米药物载体材料的设计与性能[J]. 复合材料学报, 2024, 41(6): 3186-3196. doi: 10.13801/j.cnki.fhclxb.20230926.003
YIN Chengwu, CHEN Yuxin, WANG Yujie, et al. Design and performance of hollow mesoporous SiO2-based nanodrug carrier materials with controllable particle size[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3186-3196. doi: 10.13801/j.cnki.fhclxb.20230926.003
Citation: YIN Chengwu, CHEN Yuxin, WANG Yujie, et al. Design and performance of hollow mesoporous SiO2-based nanodrug carrier materials with controllable particle size[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3186-3196. doi: 10.13801/j.cnki.fhclxb.20230926.003

粒径可控型中空介孔SiO2基纳米药物载体材料的设计与性能

doi: 10.13801/j.cnki.fhclxb.20230926.003
基金项目: 贵州省省级科技计划项目(黔科合基础-ZK[2022]一般216);贵州省高等学校绿色化学与资源环境创新团队(黔科技[2022]13号);贵州民族大学科研项目(GZMUZK[2021]YB09)
详细信息
    通讯作者:

    周国永,博士,教授,硕士生导师,研究方向为高分子纳米药物载体 E-mail: gyzhou@gzmu.edu.cn

  • 中图分类号: O630;TB332

Design and performance of hollow mesoporous SiO2-based nanodrug carrier materials with controllable particle size

Funds: Guizhou Provincial Science and Technology Projects (ZK[2022]216); Green Chemistry and Resource Environment Innovation Team of Guizhou Provincial Higher Education Institutions (Qian Technology[2022]13); Research Fund of Guizhou Minzu University (GZMUZK[2021]YB09)
  • 摘要: 本文分别以聚丙烯酸(PAA)、正硅酸乙酯(TEOS)、硅烷偶联剂Si-69,异硫氰酸荧光素(FITC)为软模板,主要原料为荧光剂,利用自模板法制备具有荧光标记的中空介孔SiO2纳米载体(HMSNs-69-FITC)。通过FTIR、DLS、BET、Raman和TEM对纳米载体的结构、粒径进行测定,用紫外分光光度计和TEM对其还原敏感性能进行表征,用溶剂挥发法负载索拉非尼(SOR),并计算其负载效率。研究结果表明,调控PAA的量可以实现HMSNs在25~380 nm范围内粒径可控,其中,0.024 g/mL PAA、平均粒径100 nm的HMSNs稳定性能优良,HMSNS-69-FITC对SOR的负载效率为280.0 μg/mg,在含有0.0083 g/mL二硫苏糖醇(DTT)的PBS溶液中,48 h累计释放率约为82.4%;而无DTT时,48 h累计释放率约为25.1%,该载体具有二硫键还原敏感性。此研究工作有助于推动粒径可控的、还原敏感型SiO2纳米载体领域的研究。

     

  • 图  1  (a) 聚丙烯酸酯铵(APA)制备流程;(b) 中空复合型SiO2纳米载体(HMSNs-69)的制备流程;(c) HMSNs-69的硫氰酸荧光素修饰(HMSNs-69-FITC)形成路线

    Figure  1.  (a) Preparation process of APA; (b) Preparation process of hollow mesoporous SiO2 nanocarriers (HMSNs)-69; (c) Formation route of HMSNs-69-fluorescein isothiocyanate (FITC)

    图  2  不同聚丙烯酸(PAA)含量的软模板的SEM图像: 0.02 g (a1)、0.12 g (a2)、0.22 g (a3)、0.32 g (a4)、0.42 g (a5)、0.52 g (a6);不同PAA含量制备得HMSNs的TEM图像:0.02 g (b1)、0.12 g (b2)、0.22 g (b3)、0.32 g (b4)、0.42 g (b5)、0.52 g (b6)

    Figure  2.  SEM images of soft template with different contents of polyacrylic acid (PAA): 0.02 g (a1), 0.12 g (a2), 0.22 g (a3), 0.32 g (a4), 0.42 g (a5), and 0.52 g (a6); TEM images of HMSNs with different contents of PAA: 0.02 g (b1), 0.12 g (b2), 0.22 g (b3), 0.32 g (b4), 0.42 g (b5), and 0.52 g (b6)

    图  3  不同PAA含量制备的HMSNs的动态光散射(DLS)图: 0.02 g (a)、0.12 g (b)、0.22 g (c)、0.32 g (d)、0.42 g (e)、and 0.52 g (f)

    Figure  3.  Dynamic light scattering (DLS) plot of HMSNs with different PAA amounts: 0.02 g (a), 0.12 g (b), 0.22 g (c), 0.32 g (d), 0.42 g (e), and 0.52 g (f)

    图  4  PAA的添加量与粒径函数关系

    Figure  4.  Functional relationship of between the amount of PAA and the particle size

    图  5  不同正硅酸乙酯(TEOS)/硅烷偶联剂Si-69体积比制得HMSNs-69的TEM图像:1.2/1.8 ((a1)~(a4))、1.5/1.5 ((b1)~(b4))、1.8/1.2 ((c1)~(c4))、2.2/0.8 ((d1)~(d4))、2.6/0.4 ((e1)~(e4))

    Figure  5.  TEM images of HMSNs-69 prepared by volume ratios of different ethyl orthosilicate (TEOS)/silane coupling agent Si-69: 1.2/1.8 ((a1)-(a4)), 1.5/1.5 ((b1)-(b4)), 1.8/1.2 ((c1)-(c4)), 2.2/0.8 ((d1)-(d4)), and 2.6/0.4 ((e1)-(e4))

    图  6  HMSNs-69的吸附脱附等温线(a)、脱附微分积分的孔体积-孔径对数分布曲线(b)

    Figure  6.  Adsorption desorption isotherms (a), logarithmic distribution curve of volume aperture of differential integral holes (b) of HMSNs-69

    图  7  HMSNs-69的SEM图像(a)、EDS能谱图(C元素(b)、O元素(c)、Si元素(d)、S元素(e))和元素分布图谱(f)

    Figure  7.  SEM image (a), EDS spectra (C element (b), O element (c), Si element (d), S element (e)) and element distribution map (f) of HMSNs-69

    图  8  (a) Si-69、HMSNs和HMSNs-69的拉曼图谱;(b) FITC、HMSNs-69和HMSNs-69-FITC的荧光色谱;(c) HMSNs、HMSNs-69和HMSNs-69-FITC的红外图谱

    Figure  8.  (a) Raman spectra of Si-69, HMSNs and HMSNs-69; (b) Fluorescence chromatography of FITC, HMSNs-69 and HMSNs-69-FITC; (c) Infrared spectra of HMSNs, HMSNs-69 and HMSNs-69-FITC

    图  9  —S—S—和二硫苏糖醇(DTT)的氧化还原反应过程[30]、实验组和对照组的紫外吸收强度随时间的变化情况(b)、HMSNs-69-FITC降解前(c1)、降解7天(c2)、降解15天(c3)的SEM图像

    Figure  9.  —S—S— and dithiothreitol (DTT) redox reaction process[30](a), changes of UV absorption intensity over time in the experimental group and the control group (b), SEM images of HMSNs-69-FITC before degradation (c1), after degradation 7 days (c2), and 15 days (c3)

    图  10  (a) HMSNs-69-FITC负载药物的紫外光谱;(b) HMSNs-69-FITC在48 h内药物释放情况;(c) 索拉非尼标准曲线

    Figure  10.  (a) UV spectra of HMSNs-69-FITC-loaded drugs; (b) Drug release of HMSNs-69-FITC within 48 h; (c) Sorafenib standard curve

    图  11  APA、APA+NH4OH、HMSNs和HMSNs-69的Zeta电位

    Figure  11.  Zeta potentials of APA, APA+NH4OH, HMSNs and HMSNs-69

  • [1] YANG T, ZHANG J, YU Y, et al. Preparation, pharmacokinetic and application of gold nanoclusters (AuNCs) in tumor treatment[J]. Current Medicinal Chemistry, 2021, 28(34): 6990-7005. doi: 10.2174/0929867328666210331145134
    [2] 尹付琳, 刘超, 陈雨鑫, 等. 低CMC纳米载体PEGMA-b-PLLA-b-PCL的制备及其药物缓释性能[J]. 精细化工, 2023, 40(11): 2503-2515, 2521.

    YIN Fulin, LIU Chao, CHEN Yuxin, et al. Preparation and drug sustained release performance of low CMC nanocarrier PEGMA-b-PLLA-b-PCL[J]. Fine Chemicals, 2023, 40(11): 2503-2515, 2521(in Chinese).
    [3] KAMALY N, YAMEEN B, WU J, et al. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release[J]. Chemical Reviews, 2016, 116(4): 2602-2663.
    [4] HÖRMANN K, ZIMMER A. Drug delivery and drug targeting with parenteral lipid nanoemulsions—A review[J]. Journal of Controlled Release, 2016, 223(10): 85-98.
    [5] CHENG L, WANG X W, GONG F, et al. 2D nanomaterials for cancer theranostic applications[J]. Advanced Materials, 2020, 32(13): 1902333.
    [6] LI Y S, SHI J L. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications[J]. Advanced Materials, 2014, 26(20): 3176-3205. doi: 10.1002/adma.201305319
    [7] LIN L S, SONG J B, YANG H H, et al. Yolk-shell nanostructures: Design, synthesis, and biomedical applications[J]. Advanced Materials, 2018, 30(6): 1704639. doi: 10.1002/adma.201704639
    [8] 王环江, 杨启亮, 张雨晨, 等. 芳香性聚氨基酸破乳剂的制备及性能评价[J/OL]. 材料导报, 2024: 1-16. doi: http://kns.cnki.net/kcms/detail/50.1078.TB.20230419.1453.006.html.

    WANG Huanjiang, YANG Qiliang, ZHANG Yuchen, et al. Preparation and performance evaluation of aromatic polyamino acid demulsifier[J/OL]. Material Reports, 2024: 1-16(in Chinese). doi: http://kns.cnki.net/kcms/detail/50.1078.TB.20230419.1453.006.html.
    [9] 王环江, 杨启亮, 张雨晨, 等. 原位接枝纳米炭黑水包油型破乳剂制备与性能评价[J]. 材料导报, 2023, 37(4): 241-246. doi: 10.11896/cldb.21070242

    WANG Huanjiang, YANG Qiliang, ZHANG Yuchen, et al. Synthesis and performance evaluation of in-situ grafted carbon black nanoparticle as demulsifier for treating crude oil-in-water emulsions[J]. Materials Reports, 2023, 37(4): 241-246(in Chinese). doi: 10.11896/cldb.21070242
    [10] 汤琦龙, 傅晶依, 窦信, 等. 改性壳聚糖磁性纳米材料的研究进展[J]. 复合材料学报, 2022, 39(3): 1017-1025. doi: 10.13801/j.cnki.fhclxb.20210830.003

    TANG Qilong, FU Jingyi, DOU Xin, et al. Research progress of modified chitosan magnetic nanomaterials[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1017-1025(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210830.003
    [11] 卢英, 荀晓伟, 杨志伟, 等. 纳米羟基磷灰石及其复合材料作为药物载体的研究进展[J]. 复合材料学报, 2020, 37(12): 2953-2965. doi: 10.13801/j.cnki.fhclxb.20200814.002

    LU Ying, XUN Xiaowei, YANG Zhiwei, et al. Research progress of nano-hydroxyapatite and its composite materials as drug carriers[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 2953-2965(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200814.002
    [12] DANAEI M, DEHGHANKHOLD M, ATAEI S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems[J]. Pharmaceutics, 2018, 10(2): 57. doi: 10.3390/pharmaceutics10020057
    [13] ZHOU Y M, XU Q N, LI C H, et al. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review[J]. Frontiers of Materials Science, 2020, 14(4): 373-386. doi: 10.1007/s11706-020-0526-4
    [14] CUI L, LIU W T, LIU H, et al. pH-triggered charge-reversal mesoporous silica nanoparticles stabilized by chitosan oligosaccharide/carboxymethyl chitosan hybrids for effective intracellular delivery of doxorubicin[J]. ACS Applied Bio Materials, 2019, 2(5): 1907-1919. doi: 10.1021/acsabm.8b00830
    [15] TAO G J, HE W J, WANG Y, et al. Dispersity, mesoporous structure and particle size modulation of hollow mesoporous silica nanoparticles with excellent adsorption performance[J]. Dalton Transactions, 2018, 47(38): 13345-13352. doi: 10.1039/C8DT01940A
    [16] LIN C H, CHANG J H, YEH Y Q, et al. Formation of hollow silica nanospheres by reverse microemulsion[J]. Nanoscale, 2015, 7(21): 9614-9626. doi: 10.1039/C5NR01395J
    [17] 兰海, 姚棋, 游经鹏, 等. 中空介孔氧化硅纳米颗粒的制备及应用进展[J]. 精细化工, 2020, 37(7): 1297-1303. doi: 10.13550/j.jxhg.20200015

    LAN Hai, YAO Qi, YOU Jingpeng, et al. Hollow mesoporous silica nanoparticles: Preparation methods and applications[J]. Fine Chemicals, 2020, 37(7): 1297-1303(in Chinese). doi: 10.13550/j.jxhg.20200015
    [18] 付欣, 张玉苍, 李瑞松, 等. 气溶胶辅助自组装制备中空球形二氧化硅材料的机理及应用[J]. 化工进展, 2022, 41(1): 327-335.

    FU Xin, ZHANG Yucang, LI Ruisong, et al. Mechanism and application of aerosol assisted self-assembly to prepare hollow spherical silica materials[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 327-335(in Chinese).
    [19] DONG J J, YAO X Y, SUN S A, et al. In vivo targeting of breast cancer with a vasculature-specific GQDs/hMSN nanoplatform[J]. RSC Advances, 2019, 9(20): 11576-11584. doi: 10.1039/C9RA01833F
    [20] 葛界芳, 熊向源. 抑制癌症治疗多药耐药性的纳米药物递送体系[J]. 精细化工, 2023, 40(5): 989-999.

    GE Jiefang, XIONG Xiangyuan. Nanodrug delivery system for inhibiting multidrug resistance in cancer treatment[J]. Fine Chemicals, 2023, 40(5): 989-999(in Chinese).
    [21] GUO L Y, PING J T, QIN J L, et al. A comprehensive study of drug loading in hollow mesoporous silica nanoparticles: Impacting factors and loading efficiency[J]. Nanomaterials, 2021, 11(5): 1293. doi: 10.3390/nano11051293
    [22] ZHOU Y M, XU Q N, LI C H, et al. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review[J]. Frontiers of Materials Science, 2020, 14(4): 373-386.
    [23] 李晴, 钱付平, 薛沚怡, 等. 改性SiO2凝胶涂层滤料制备与性能[J]. 复合材料学报, 2021, 38(8): 2489-2496.

    LI Qing, QIAN Fuping, XUE Zhiyi, et al. Preparation and properties of modified SiO2 gel-coated filter media[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2489-2496(in Chinese).
    [24] 杨梦然, 尚宏周, 来士胜, 等. 中空介孔硅基刺激响应型纳米药物载体的研究进展[J]. 现代化工, 2022, 42(4): 58-61. doi: 10.16606/j.cnki.issn0253-4320.2022.04.012

    YANG Mengran, SHANG Hongzhou, LAI Shisheng, et al. Research progress on hollow mesoporous silicon-based stimulus responsive nano drug carriers[J]. Modern Chemical Industry, 2022, 42(4): 58-61(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2022.04.012
    [25] 余丽丽, 刘乾, 姚琳, 等. 氧化 还原敏感型胶束的构建和药物控释性能[J]. 高分子材料科学与工程, 2018, 34(9): 20-25.

    YU Lili, LIU Qian, YAO Lin, et al. Construction and controlled release properties of redox responsive micelles[J]. Polymer Materials Science and Engineering, 2018, 34(9): 20-25(in Chinese).
    [26] PENG X, LIANG Y T, YIN Y, et al. Development of a hollow mesoporous silica nanoparticles vaccine to protect against house dust mite induced allergic inflammation[J]. International Journal of Pharmaceutics, 2018, 549(1-2): 115-123.
    [27] XU X Y, DUAN J L, LAN Q, et al. A dual-sensitive poly(amino acid)/hollow mesoporous silica nanoparticle-based anticancer drug delivery system with a rapid charge-reversal property[J]. Journal of Drug Delivery Science and Technology, 2021, 66: 102817. doi: 10.1016/j.jddst.2021.102817
    [28] LI Z M, YANG Y, WEI H X, et al. Charge-reversal biodegradable MSNs for tumor synergetic chemo/photothermal and visualized therapy[J]. Journal of Controlled Release, 2021, 338: 719-730. doi: 10.1016/j.jconrel.2021.09.005
    [29] 韩伟豪, 宫玉梅, 张辰, 等. 不同铁源制备磁性中空介孔硅铁复合微球及应用[J]. 复合材料学报, 2020, 37(5): 1123-1129. doi: 10.13801/j.cnki.fhclxb.20190730.005

    HAN Weihao, GONG Yumei, ZHANG Chen, et al. Preparation and application of magnetic hollow mesoporous SiO2-Fe x O y microspheres from different Fe sources[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1123-1129(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190730.005
    [30] CAO L D, ZHANG H R, ZHOU Z L, et al. Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles[J]. Nanoscale, 2018, 10(43): 20354-20365. doi: 10.1039/C8NR04626C
    [31] DU Q Q, LIU Q. ROS-responsive hollow mesoporous silica nanoparticles loaded with Glabridin for anti-pigmentation properties[J]. Microporous and Mesoporous Materials, 2021, 327: 111429. doi: 10.1016/j.micromeso.2021.111429
    [32] GUO L Y, PING J T, QIN J L, et al. A comprehensive study of drug loading in hollow mesoporous silica nanoparticles: Impacting factors and loading efficiency[J]. Nanomaterials, 2021, 11(5): 1293. doi: 10.3390/nano11051293
  • 加载中
图(11)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  156
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-04
  • 修回日期:  2023-09-09
  • 录用日期:  2023-09-10
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回