留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水分-载荷耦合作用下2D编织复合材料的力学行为

成朝辉 刘斌 向栋 徐绯 冯威

成朝辉, 刘斌, 向栋, 等. 水分-载荷耦合作用下2D编织复合材料的力学行为[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 成朝辉, 刘斌, 向栋, 等. 水分-载荷耦合作用下2D编织复合材料的力学行为[J]. 复合材料学报, 2024, 42(0): 1-11.
CHENG Zhaohui, LIU Bin, XIANG Dong, et al. Mechanical behavior of 2D braided composites under the coupling effect of moisture and load[J]. Acta Materiae Compositae Sinica.
Citation: CHENG Zhaohui, LIU Bin, XIANG Dong, et al. Mechanical behavior of 2D braided composites under the coupling effect of moisture and load[J]. Acta Materiae Compositae Sinica.

水分-载荷耦合作用下2D编织复合材料的力学行为

基金项目: 国家自然科学基金 (12272320);国家自然基金青年项目(12202336);中央高校基本科研业务费专项资金资助(D5000230141)
详细信息
    通讯作者:

    冯威,博士,副教授,硕士生导师,研究方向为复合材料失效,复合材料修理 E-mail: fengwei@nwpu.edu.cn

  • 中图分类号: TB332

Mechanical behavior of 2D braided composites under the coupling effect of moisture and load

Funds: National Natural Science Foundation of China (No. 12272320); National Natural Science Foundation for Young Scientists of China (No.12202336); The Fundamental Research Funds for the Central Universities (No. D5000230141)
  • 摘要: 为了研究长期水分-载荷耦合作用下2D编织复合材料的吸湿行为及性能劣化规律,设计了水分-载荷耦合环境老化装置,开展了不同应力水平下T300/H69 平纹编织复合材料的吸湿试验及吸湿后的拉伸试验。结果表明:T300/H69 编织复合材料的吸湿量与拉伸预应力总体上呈现正相关,随着拉伸预应力的增大而增大;相对于水分单独作用,水分-载荷耦合作用下材料的弹性模量和强度退化更为明显,在140% σs预应力下作用432小时后,编织复合材料的弹性模量及失效强度分别下降达55.9%和35.4%。此外,通过宏微观断面分析,进一步揭示长期水分-载荷耦合作用下编织复合材料性能的退化机制,并基于Shiva剩余强度理论,改进了水分-载荷作用下复合材料的剩余强度模型,预测结果良好,为复杂环境下复合材料耐久性设计提供指导。

     

  • 图  1  拉伸预应力施加系统

    Figure  1.  Tension prestressing application system

    图  2  不同预应力下T300/H69编织复合材料的吸湿量-时间变化曲线

    Figure  2.  Moisture absorption-time curves of T300/H69 braided composites under different prestresses

    图  3  不同预应力下T300/H69编织复合材料的吸湿量

    Figure  3.  Moisture absorption of T300 / H69 braided composites under different prestress

    图  4  不同工况下作用288小时后T300/H69编织复合材料的载荷-位移曲线

    Figure  4.  The load-displacement curves of T300 / H69 braided composites after 288 hours under different working conditions

    图  5  不同环境中T300/H69编织复合材料的弹性模量及失效强度

    Figure  5.  Elastic modulus and failure strength of T300 / H69 braided composites in different environments

    图  6  T300/H69编织复合材料的预应力-失效强度曲线

    Figure  6.  Prestress-failure strength curve of T300/H69 braided composites

    图  7  T300/H69编织复合材料的弹性模量及失效强度随吸湿量的变化

    Figure  7.  The elastic modulus and failure strength of T300/H69 braided composites change with moisture absorption.

    图  8  T300/H69编织复合材料宏观断口形貌

    Figure  8.  Macroscopic fracture surface of T300 / H69 braided composites

    图  9  T300/H69编织复合材料试样拉伸断口的SEM图

    Figure  9.  SEM image of tensile fracture of T300 / H69 braided composites specimen

    图  10  T300/H69编织复合材料不同模型下的拟合结果

    Figure  10.  The fitting results under different models of T300 / H69 braided composites

    图  11  文献数据拟合

    Figure  11.  Literature data fitting

    表  1  T300/H69复合材料的基本力学性能参数

    Table  1.   Basic mechanical properties of T300 / H69 composites

    Engineering constants Value Engineering constants Value
    E1/GPa 55.90 XT/MPa 602
    E2/GPa 54.60 XC/MPa 431
    E3/GPa 7.220 YT/MPa 597
    G12/GPa 3.812 YC/MPa 422
    G13/GPa 3.122 ZT/MPa 60
    G23/GPa 3.122 ZC/MPa 152
    $ \nu _{12}$ 0.068 S12/MPa 83
    $ \nu _{13}$ 0.310 S13/MPa 49
    $ \nu_{23} $ 0.310 S23/MPa 49
    Notes:E1E2 and E1 are the elastic modulus in different directions. G12, G13 and G23 are shear modulus in different directions. $ \nu_{12} $, $ \nu_{12} $ and $ \nu_{12} $ are the Poisson 's ratio of the material. XT, XC, YT, YC, ZT, ZC are axial tension, axial compression, transverse tension, transverse compression, normal tension, normal tension. S12, S13, S23 are the corresponding in-plane shear strength.
    下载: 导出CSV

    表  2  试验矩阵

    Table  2.   Test matrix

    Pretreated Specimen group Test time / h
    Untreated Dry 0
    Moisture Wet 144,288,432
    Load D-80% σs 288
    D-110% σs 288
    D-120% σs 288
    Moisture- load W-80% σs 144,288,432
    W-100% σs 144,288,432
    W-120% σs 144,288,432
    W-140% σs 144,288,432
    Notes:D and W are the dry state and moisture absorption state of the material; σs—yield stress.
    下载: 导出CSV

    表  3  Fick吸湿模型的相关参数

    Table  3.   The relevant parameters of Fick moisture absorption

    Tensile prestress Diffusion coefficient D/(mm2/h) Balanced moisture
    contentM/%
    0 0.00175 0.464
    80% σs 0.00192 0.612
    100% σs 0.00213 0.706
    120% σs 0.00229 0.917
    140% σs 0.00257 1.297
    下载: 导出CSV

    表  4  T300/H69编织复合材料的弹性模量及强度

    Table  4.   Elastic modulus and strength of T300 / H69 braided composites

    Category 144 hours 288 hours 432 hours
    E/GPa σf /GPa E/GPa σf /GPa E/GPa σf /GPa
    Moisture Average 13.721 0.195 13.627 0.193 13.586 0.192
    CV 2.13% 2.31% 4.61% 2.01% 1.09% 1.82%
    D-80%σs Average / / 13.204 0.191 / /
    CV / / 2.61% 2.30% / /
    D-100%σs Average / / 12.715 0.187 / /
    CV / / 1.89% 1.6% / /
    D-120%σs Average / / 10.643 0.180 / /
    CV / / 3.64% 1.78% / /
    W-80%σs Average 12.873 0.190 12.682 0.184 12.535 0.181
    CV 2.05% 0.74% 3.01% 1.36% 2.43% 1.88%
    W-100%σs Average 11.947 0.182 11.516 0.174 11.419 0.169
    CV 4.19% 2.58% 3.32% 2.82% 5.08% 3.02%
    W-120%σs Average 10.404 0.162 9.506 0.151 8.975 0.143
    CV 3.27% 3.33% 4.12% 3.88% 5.39% 2.66%
    W-140%σs Average 9.232 0.151 7.521 0.138 6.136 0.128
    CV 4.78% 2.72% 5.66% 3.38% 7.12% 4.11%
    Notes:E is the elastic modulus of the material, σf is the failure strength of the material, CV is the coefficient of variation.
    下载: 导出CSV
  • [1] HAN Wei, ZHANG Hong-ping, TAVAKOLI J, et al. Polydopamine as Sizing on Carbon Fiber Surfaces for Enhancement of Epoxy Laminated Composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 107: 626-632. doi: 10.1016/j.compositesa.2018.02.003
    [2] RANI M, CHOUDHARY P, KRISHNAN V, et al. A Review on Recycling and Reuse Methods for Carbon Fiber/Glass Fiber Composites Waste from Wind Turbine Blades[J]. Composites Part B:Engineering, 2021, 215: 108768. doi: 10.1016/j.compositesb.2021.108768
    [3] CHEN Junlin, WANG Kai, ZHAO Yan. E-nhanced Interfacial Interactions of Carbon F-iber Reinforced PEEK Composites by Regulating PEI and Graphene Oxide Complex Sizing at the Interface[J]. Composites Science and Technology, 2018, 154: 175-186. doi: 10.1016/j.compscitech.2017.11.005
    [4] LIU B, HAN Q, ZHONG X P, et al. The impact damage and residual load capacity of composite stepped bonding repairs and joints[J]. Composites Part B:Engineering, 2019, 158: 339-351. doi: 10.1016/j.compositesb.2018.09.096
    [5] CHEN C, ZHANG C, LIU C, et al. Rate-dependent tensile failure behavior of short fiber reinforced PEEK[J]. Composites Part B:Engineering, 2018, 136: 187-196. doi: 10.1016/j.compositesb.2017.10.031
    [6] 张月欣, 杨明君, 王崇杰, 等. 干湿环境对环氧树脂/碳纤维复合材料层合板老化性能的影响[J]. 工程塑料应用, 2022, 50(04): 124-129.

    ZHANG Yuexin, YANG Mingjun, WANG Chongjie, et al. Effects of Dry/Wet Environment on Aging Properties of Epoxy Resin/Carbon Fiber Composite Laminates[J]. ENGINEERING PLASTI-CS APPLICATION, 2022, 50(04): 124-129(in Chinese).
    [7] 李佳楠, 姜亚明, 项赫, 等. 高性能纤维增强树脂基复合材料湿热老化研究进展 [J/OL]. 化工新型材料: 1-9.

    LI Jianan, JIANG Yaming, XIANG He, et al. Research progress in the hydrot-hermal aging of high-performance fiber reinforced plastic [J/OL]. New Chemical Materials: 1-9(in Chinese).
    [8] BLACKBURN B P, TATAR J, DOUGLAS E P, et al. Effects of hygrothermal conditioning on epoxy adhesives used in FRP composites[J]. Construction and Building Materials, 2015, 96: 679-689. doi: 10.1016/j.conbuildmat.2015.08.056
    [9] PRADIP S, ASHOK M. Experimental and numerical study on moisture diffusion phenomenon of natural fiber based on composites[J]. Materials today:Proceedings, 2017, 4(9): 10293-10297. doi: 10.1016/j.matpr.2017.06.367
    [10] ROCHA I B C M , RAIJMAEKERS S , VAN d M F P, et al. Combined experimental/numerical investigation of directional moisture diffusion in glass/epoxy composites. Composite Science and Technology, 2017, 151: 16-24.
    [11] 齐士杰, 张纪奎, 程小全. 吸湿后复合材料层合板快速加热分层扩展数值模拟[J]. 复合材料报, 2016, 33(08): 1687-1693.

    QI Shijie , ZHANG Jikui , CHENG Xiaoquan. Numerical simulation of rapid heating induced delamination growth of composite laminates after moisture absorption[J]. Acta Materiae Compositae Sinica, 2016, 33(08): 1687-1693(in Chinese).
    [12] 张先航, 李曙林, 常飞, 等. BA9916-II/CCF复合材料加筋板吸湿特性[J]. 航空材料学报, 2017, 37(5): 63-69.

    ZHANG Xianhang LI Shulin CHANG fei, et al. BA9916-II/CCF300 Composite Stiffened Plate Hygroscopic Characteristics[J]. JOUR-NAL OF AERONAUTICAL MATERIALS, 2017, 37(5): 63-69(in Chinese).
    [13] 吴以婷, 葛东云, 李辰. 湿热环境下Carbon/Epo-xy复合材料层合板动态压缩性能[J]. 复合材学报, 2016, 33(02): 259-264.

    WU Yiting, GE Dongyun, LI Chen. Dynamic compressive properties of Carbon/Epoxy composite laminates under hygrothermal environment[J]. Acta Materiae Compositae Sinica, 2016, 33(02): 259-264(in Chinese).
    [14] SHETTY K, SRIHARI S, MANJUNATHA C M. Effect of hygrothermal aging on the interlaminar shear strength of a carbon fibre composite[J]. Procedia Structural Integrity, 2019, 14: 849-854. doi: 10.1016/j.prostr.2019.07.063
    [15] 张裕恒, 王继辉, 魏建辉, 等. 湿热环境下碳纤维增强乙烯基树脂复合材料长期力学性能[J]. 复合材料学报, 2023, 40(03): 1406-1416.

    ZHANG Yuheng , WANG Jihui , WEI Jianhui, et al. Long-term mechanical properties of carbon fiber reinforced v-inyl resin composites in hygrothermal environment[J]. Acta Materiae Compositae Sinica, 2023, 40(03): 1406-1416(in Chinese).
    [16] 王登霞, 孙岩, 谢可勇, 等. 碳纤维增强树脂基复合材料模拟海洋环境长期老化及失效行为[J]. 复合材料学报, 2022, 39(03): 1353-1362.

    WANG Dengxia , SUN Yan, XIE Keyong, et al. Long term aging and failure behaviors of carbon fiber reinforced polymer composites in simulated marine environments[J]. Acta Materiae Compositae Sinica, 2022, 39(03): 1353-1362(in Chinese).
    [17] 许良, 涂宜鸣, 崔浩, 等. 海水环境下老化周期对T800碳纤维/环氧树脂复合材料的影响[J]. 材料工程, 2022, 50(12): 89-94.

    XU Liang, TU Yiming, CUI Hao, et al. Effect of aging cycle on T800 carbon fiber / epoxy resin composites in seawater environment[J]. Journal of Materials Engineering, 2022, 50(12): 89-94(in Chinese).
    [18] HUMEAU C, DAVIES P, JACQUEMIN F. An Experimental Study of Moisture Diffusion in Carbon/epoxy Composites Under Static Tensile Stress[J]. Composites Part A, 2018, 107: 94-104. doi: 10.1016/j.compositesa.2017.12.016
    [19] 李彪, 李家兴, 贾彬, 等. 海水浸泡与应力耦合作用下碳纤维复材网格单肢拉伸力学性能试验研究[J]. 工业建筑, 2020, 50(11): 178-183.

    LI Biao, LI Jiaxing, JIA Bin, et al. Experimental study on tensile propertiesof CFRP grids under the coupling of seawater immersion and stress[J]. Industrial Construction, 2020, 50(11): 178-183(in Chinese).
    [20] 南田田. 湿热环境下弯曲载荷对CFRP性能的影响[D]. 哈尔滨工业大学, 2013.

    NAN Tiantian. Influence of bending load on the CFRP under hygrothermal environment [D]. Harbin Institute of Technology, 2013(in Chinese).
    [21] 马晓红, 田文强, 夏燕茂. 二维编织复合材料的结构及力学性能研究[J]. 上海纺织科技, 2016, 44(05): 27-29.

    MA Xiaohong, TIAN Wenqiang, XIA Yanmao. Structure and mechanical properties of 2D braided composites[J]. Shanghai Textile Science & Technology, 2016, 44(05): 27-29(in Chinese).
    [22] GB/T 1447-2005, 纤维增强塑料拉伸性能试验方法[S].

    GB/T 1447-2005, Test method for tensile properties of fiber reinforced plastics [S] (in Chinese).
    [23] HB 7401-2020, 航空用聚合物基复合材料吸湿试验方法[S].

    HB 7401-2020, Moisture absorption test method of polymer matrix composites for aviation [S] (in Chinese).
    [24] SHEN C H, SPRINGER G S. Moisture Absorption and Desorption of Composite Materials[J]. Journal of Composite Materials, 1976, 10(1): 2-20. doi: 10.1177/002199837601000101
    [25] XU J, HENK K, FRANS B. Moisture diffusion and hygrothermal aging in pultruded fibre reinforced polymer composites of bridge decks[J]. Materials & Design, 2012, 37: 304-312.
    [26] SHIVA E, FATHOLLAH T B, FARID T. Long-term hygrothermal response of perforated GFRP plates with/without application of constant external loading[J]. Polymer Composites, 2012, 33(4): 467-475. doi: 10.1002/pc.22150
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2023-12-28
  • 录用日期:  2024-01-02
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回