留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯纤维-钢筋/混凝土管节受力性能试验

刘新荣 陈鹏 邓志云 梁宁慧 谢应坤

刘新荣, 陈鹏, 邓志云, 等. 聚丙烯纤维-钢筋/混凝土管节受力性能试验[J]. 复合材料学报, 2021, 38(12): 4349-4361. doi: 10.13801/j.cnki.fhclxb.20210203.003
引用本文: 刘新荣, 陈鹏, 邓志云, 等. 聚丙烯纤维-钢筋/混凝土管节受力性能试验[J]. 复合材料学报, 2021, 38(12): 4349-4361. doi: 10.13801/j.cnki.fhclxb.20210203.003
LIU Xinrong, CHEN Peng, DENG Zhiyun, et al. Experimental study on the mechanical properties of polypropylene fiber-steel bar reinforced concrete pipe[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4349-4361. doi: 10.13801/j.cnki.fhclxb.20210203.003
Citation: LIU Xinrong, CHEN Peng, DENG Zhiyun, et al. Experimental study on the mechanical properties of polypropylene fiber-steel bar reinforced concrete pipe[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4349-4361. doi: 10.13801/j.cnki.fhclxb.20210203.003

聚丙烯纤维-钢筋/混凝土管节受力性能试验

doi: 10.13801/j.cnki.fhclxb.20210203.003
基金项目: 国家自然科学基金(41772319);重庆市研究生科研创新项目(CYS19005);重庆市技术创新与应用示范专项社会民生类重点研发项目(cstc2018jscx-mszdX0071)
详细信息
    通讯作者:

    刘新荣,博士,教授,博士生导师,研究方向为纤维混凝土与岩土工程  E-mail:liuxrong@126.com

  • 中图分类号: TU528.58

Experimental study on the mechanical properties of polypropylene fiber-steel bar reinforced concrete pipe

  • 摘要: 顶管施工中钢筋/混凝土管节存在开裂现象,严重影响工程质量与后续营运。鉴于聚丙烯纤维具有改善混凝土抗拉、抗裂性能的作用,本文采用2种聚丙烯细纤维和1种聚丙烯粗纤维,设计了无纤维、单掺粗纤维及混掺三种尺度纤维的3组钢筋/混凝土管试件,进行了三点试验,对比分析管节的开裂破坏形态、荷载挠度曲线和开裂延性指标。并建立纤维混凝土管节三点试验的有限元模型,进一步探究聚丙烯纤维掺量对钢筋/混凝土管节受力性能的影响规律。结果表明,聚丙烯粗纤维可提高混凝土管的抗裂与承载能力,聚丙烯粗、细纤维的协同作用使管达到更高的使用和极限强度。相比无纤维管,混掺多尺度纤维提升管的使用强度和极限强度分别为28.7%和36.4%。此外,数值模拟合理地预测了纤维/混凝土管节的荷载挠度响应,并针对混凝土管节的极限强度值,得到单掺和混掺聚丙烯纤维时粗纤维的最佳掺量。

     

  • 图  1  不同尺度聚丙烯纤维的外观形状

    Figure  1.  Appearance of polypropylene fibers of different scales

    图  2  钢筋/混凝土管节试件截面与配筋

    Figure  2.  Section and reinforcement of reinforced concrete pipe specimen

    图  3  三点试验加载装置示意图

    Figure  3.  Schematic diagram of the pipe three-edge-bearing test loading device

    图  4  钢筋/混凝土管节三点试验加载与记录的过程

    Figure  4.  Test process of loading and recording of reinforced concrete pipe three-edge-bearing test

    图  5  三类钢筋/混凝土试验管的开裂破坏形态

    Figure  5.  Cracking and failure modes of three types of test reinforced concrete pipes

    图  6  钢筋/混凝土管DL与管顶挠度的关系曲线

    Figure  6.  Relation curve between DL and top deflection of reinforced concrete pipes

    图  7  计算开裂后强度SPC值的钢筋/混凝土管荷载-挠度曲线

    Figure  7.  Load-deflection curves of reinforced concrete pipes to calculate post-cracking strength SPC value

    δ—Deflection; δpeak—Peak deflection corresponding to peak load; Epost—Area bounded by a deflection to peak deflection and a deflection

    图  8  不同挠度下三组钢筋/混凝土管的峰后开裂强度SPC

    Figure  8.  Post-cracking strength SPC at different deflection values for three reinforced concrete pipes

    图  9  钢筋/混凝土管节三点试验的有限元数值模型

    Figure  9.  Finite element numerical model for the three-edge-bearing test of reinforced concrete pipe

    uX, uY, uZ—Displacement values in each direction of X, Y, and Z in the space rectangular coordinate system

    图  10  聚丙烯纤维/混凝土单轴拉压应力-应变曲线

    Figure  10.  Uniaxial compressive and tensile stress-strain curves of polypropylene fiber/concrete

    fc, ft—Compressive and tensile strength vaules of concrete; Ec—Elasticity modulus of concrete; αc, αt—Shape parameters of the falling section of the concrete compressive and tensile stress-strain curves; σc and σt—Compressive and tensile stress vaules of concrete; ε—Strain vaule of concrete; ρc, ρt, n and x—Intermediate parameters during the stress calculation process; εc and εt—Compressive and tensile peak strain vaules of concrete

    图  11  钢筋/混凝土管(FPF1-FPF2-CPF-S/C组)水平和竖向应力云图

    Figure  11.  Horizontal and vertical stress cloud map of reinforced concrete pipe (FPF1-FPF2-CPF-S/C group)

    图  12  钢筋/混凝土管(FPF1-FPF2-CPF-S/C组)塑性区应变发展过程

    Figure  12.  Development process of plastic zone strain of reinforced concrete pipe (FPF1-FPF2-CPF-S/C group)

    图  13  钢筋/混凝土管数值模拟与室内试验的DL-挠度曲线对比

    Figure  13.  Comparison of DL-deflection curves between numerical simulation and laboratory test for reinforced concrete pipes

    图  14  钢筋/混凝土管顶截面1-1弯矩与挠度关系曲线

    Figure  14.  Relation curves of bending moment and deflection at the normal roof section 1-1 for reinforced concrete pipes

    图  15  掺聚丙烯粗纤维各组钢筋/混凝土管的Du与粗纤维掺量的拟合曲线

    Figure  15.  Fitted curve between Du and crude fiber content of the reinforced concrete pipe with incorporating crude polypropylene fiber

    图  16  混掺多尺度聚丙烯纤维各组钢筋/混凝土管的Du与聚丙烯粗纤维掺量拟合曲线

    Figure  16.  Fitted curve between Du and crude fiber content of the reinforced concrete pipe with incorporating multi-scale polypropylene fibers

    表  1  不同尺度聚丙烯纤维的物理力学性能

    Table  1.   Physical and mechanical properties of polypropylene fibers of different scales

    Fiber codeDiameter/mmLength/mmAspect ratioTensile
    strength/MPa
    Elasticity
    modulus/GPa
    Density/
    (kg·m−3)
    Recommended single
    dosage/(kg·m−3)
    FPF1 0.026 19 730.8 641 8.5 0.91 0.9
    FPF2 0.1 19 190 322 3.9 0.91 0.9
    CPF 0.8 50 62.5 706 7.4 0.95 6.0
    Notes: FPF1—Type of fine polypropylene fiber; FPF2—Another type of fine polypropylene fiber; CPF—Crude polypropylene fiber.
    下载: 导出CSV

    表  2  C50混凝土设计配合比

    Table  2.   Design mix ratio of C50 concrete

    MaterialCementCoarse aggregateSandWaterWater reducer
    10-20 mm5-10 mm
    Dosage/(kg·m−3)3755455458501353.75
    下载: 导出CSV

    表  3  试验各组不同尺度聚丙烯纤维的配比

    Table  3.   Proportions of polypropylene fibers of different scales in each specimen kg·m−3

    Pipe codeFine polypropylene fibersCrude polypropylene fiberTotal content
    FPF1FPF2CPF
    S/C 0 0 0 0
    CPF-S/C 0 0 6 6
    FPF1-FPF2-CPF-S/C 0.6 0.6 4.8 6
    Notes: S/C—Reinforced concrete pipe without fiber; CPF-S/C—Reinforced concrete pipe with crude polypropylene fiber; FPF1-FPF2-CPF-S/C—Reinforced concrete pipe with multi-scale polypropylene fibers.
    下载: 导出CSV

    表  4  基于ASTM C76[17]的钢筋/混凝土管节等级强度要求

    Table  4.   Grade strength requirements for reinforced concrete pipe based on ASTM C76[17]

    Concrete pipe classD-load(DL)/(N·m−1·mm−1)
    D-load0.3(D0.3)D-loadu(Du)
    I 40 60
    II 50 75
    III 65 100
    IV 100 150
    V 140 175
    Notes: D-load(DL)—Supporting load value of pipe; D-load0.3(D0.3)—Load value when crack width is 0.3 mm, namely service strength; D-loadu(Du)—Maximum load value, namely ultimate strength.
    下载: 导出CSV

    表  5  各钢筋/混凝土试验管节的使用强度与极限强度

    Table  5.   Service load and ultimate load of each reinforced concrete pipes

    Pipe codeDL/(N·m−1·mm−1)
    D0.3Du
    S/C 126.7 216.4
    CPF-S/C 164.8 270.7
    FPF1-FPF2-CPF-S/C 171.4 278.5
    下载: 导出CSV

    表  6  钢筋/混凝土管节有限元模型单元类型与数量

    Table  6.   Number and types of the model elements of reinforced concrete pipe

    Model partElement numberElement type
    Concrete pipe 37 500 C3D8I
    Lower bearing strips 1 900
    Upper bearing strip 600
    Steel cage 5 390 T3D2
    下载: 导出CSV

    表  7  钢筋/混凝土管拉压力学性能指标

    Table  7.   Tensile and compressive mechanical properties indexes of reinforced concrete pipes

    Pipe codeλi+λj+λkEc/MPafc/MPaεc/10−6αcft/MPaεt/10−6αt
    S/C 0+0+0 42 500 47.1 2 096 1.94 2.65 142 3
    CPF-S/C 0+0+0.39 43 601 52.3 2 607.8 0.31 3.20 165.8 1.38
    FPF1-FPF2-CPF-S/C 0.48+0.13+0.32 40 792 56.4 3 018.4 0.12 3.32 224.5 1.40
    Note: λi , λj and λk—Eigenvalues of FPF1, FPF2 and CPF.
    下载: 导出CSV

    表  8  混凝土损伤塑性模型(CDP)模型的塑性参数取值

    Table  8.   Values of the concrete damaged plastic model (CDP) model plasticity parameters

    CDP model plasticity parameterValue
    Dilatation angel Ψ/(°) 36
    Flow potential eccentricity 0.1
    fb0/fc0 1.16
    Stress invariant ratio K 0.67
    Viscosity parameter μ 0.0009-0.001
    Note: fb0/fc0—Ratio of ultimate strength of biaxial compression to uniaxial compression.
    下载: 导出CSV

    表  9  钢筋/混凝土管SPC-40试验值与模拟值对比

    Table  9.   Comparison of SPC-40 between numerical simulation and laboratory test for reinforced concrete pipes

    Pipe codeTest value/
    (N·m−2)
    Simulation
    value/(N·m−2)
    Error/%
    S/C 31.2 33.6 7.7
    CPF-S/C 37.3 38.7 3.8
    FPF1-FPF2-CPF-S/C 40.4 40.9 1.4
    下载: 导出CSV

    表  10  单掺聚丙烯粗纤维各组钢筋/混凝土管的Du模拟值

    Table  10.   Du simulation value of each group of reinforced concrete with single-scale crude polypropylene fiber

    Pipe codeCPF content/
    (kg·m−3)
    λkEc/MPafc/MPaεc/10−6αcft/MPaεt/10−6αtDu/(N·m−1·mm−1)
    S/C 0 42 500 47.10 2 096.0 1.94 2.65 142.0 3.00 223.22
    CPF-S/C-1 1.0 0.07 42 856 48.77 2 261.3 1.41 2.83 149.7 2.48 232.44
    CPF-S/C-2 2.0 0.13 43 105 49.95 2 377.4 1.05 2.96 155.1 2.11 237.36
    CPF-S/C-3 3.0 0.20 43 333 51.02 2 483.1 0.71 3.07 160.0 1.77 241.83
    CPF-S/C-4 4.0 0.26 43 472 51.68 2 548.0 0.50 3.14 163.0 1.57 245.87
    CPF-S/C-5 5.0 0.33 43 571 52.14 2 593.9 0.36 3.19 165.2 1.42 249.71
    CPF-S/C 6.0 0.39 43 601 52.28 2 607.8 0.31 3.20 165.8 1.38 252.94
    CPF-S/C-7 7.0 0.46 43 579 52.18 2 597.9 0.34 3.19 165.3 1.41 250.03
    CPF-S/C-7.5 7.5 0.49 43 537 51.98 2 578.2 0.41 3.17 164.4 1.47 248.24
    CPF-S/C-8 8.0 0.53 43 472 51.68 2 548.0 0.50 3.14 163.1 1.57 247.20
    CPF-S/C-8.5 8.5 0.56 43 409 51.38 2 518.5 0.60 3.11 161.6 1.66 246.12
    CPF-S/C-9.0 9.0 0.59 43 333 51.02 2 483.1 0.71 3.07 160.0 1.77 244.99
    下载: 导出CSV

    表  11  混掺多尺度聚丙烯纤维各组钢筋/混凝土管的Du

    Table  11.   Du value of each group of reinforced concrete with multi-scale polypropylene fibers

    Pipe codeFPF1+FPF2+CPF content/(kg·m−3)λi+λj+λkEc/MPafc/MPaεc/10−6αcft/MPaεt/10−6αtDu/(N·m−1·mm−1)
    CPF-S/C 0.0+0.0+6.0 0.00+0.00+0.39 43 600 52.28 2 607.8 0.31 3.20 165.8 1.38 252.94
    FPF1-FPF2-CPF-S/C-5.8 0.1+0.1+5.8 0.08+0.02+0.38 44 519 49.60 2 692.2 0.22 3.30 176.3 1.50 255.54
    FPF1-FPF2-CPF-S/C-5.6 0.2+0.2+5.6 0.16+0.04+0.37 44 816 48.23 2 770.7 0.16 3.37 186.6 1.58 258.44
    FPF1-FPF2-CPF-S/C-5.4 0.3+0.3+5.4 0.24+0.06+0.36 44 543 48.16 2 843.4 0.12 3.40 196.6 1.61 262.78
    FPF1-FPF2-CPF-S/C-5.2 0.4+0.4+5.2 0.32+0.08+0.34 43 821 49.96 2 912.0 0.12 3.40 206.0 1.59 265.45
    FPF1-FPF2-CPF-S/C-5 0.5+0.5+5.0 0.40+0.10+0.33 42 631 52.65 2 973.6 0.14 3.37 215.4 1.54 263.47
    FPF1-FPF2-CPF-S/C 0.6+0.6+4.8 0.48+0.13+0.32 40 792 56.43 3 018.4 0.12 3.32 224.5 1.40 262.75
    FPF1-FPF2-CPF-S/C-4.6 0.7+0.7+4.6 0.56+0.15+0.30 39 076 63.10 3 072.8 0.21 3.23 232.8 1.27 259.01
    FPF1-FPF2-CPF-S/C-4.4 0.8+0.8+4.4 0.64+0.17+0.29 36 880 70.14 3 118.3 0.29 3.11 241.4 1.11 253.01
    FPF1-FPF2-CPF-S/C-4.2 0.9+0.9+4.2 0.72+0.19+0.28 34 478 78.50 3 157.8 0.40 2.97 249.8 0.94 251.45
    下载: 导出CSV
  • [1] 赖德贤. 顶管工程中顶管的计算与管材选用[D]. 广州: 华南理工大学, 2010.

    LAI Dexian. Calculation and selection of pipe on pipe jacking works[D]. Guangzhou: South China University of Technology, 2010(in Chinese).
    [2] AL RIKABI F T, SARGAND S M, KURDZIEL J. Evaluation of synthetic fiber reinforced concrete pipe performance using three-edge bearing test[J]. Journal of Testing and Evaluation,2019,47 (2):942-958.
    [3] MOHAMED N, SOLIMAN A M, NEHDI M L. Full-scale pipes using dry-cast steel fibre-reinforced concrete[J]. Construction and Building Materials,2014,72:411-422. doi: 10.1016/j.conbuildmat.2014.09.025
    [4] ABOLMAALI A, MIKHAYLOVA A, WILSON A, et al. Performance of steel fiber-reinforced concrete pipes[J]. Transportation Research Record,2012(2313):168-177.
    [5] LEE S, PARK Y, ABOLMAALI A. Investigation of flexural toughness for steel-and-synthetic-fiber-reinforced concrete pipes[J]. Structures,2019,19:203-211. doi: 10.1016/j.istruc.2018.12.010
    [6] BURATTI N, MAZZOTTI C, SAVOIA M. Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes[J]. Construction and Building Materials,2011,25 (5):2713-2722. doi: 10.1016/j.conbuildmat.2010.12.022
    [7] WILSON A, ABOLMAALI A. Performance of synthetic fiber-reinforced concrete pipes[J]. Journal of Pipeline Systems Engineering and Practice,2014,5(3):1-7.
    [8] AL RIKABI F T, SARGAND S M, KURDZIEL J, et al. Experimental investigation of thin-wall synthetic fiber-reinforced concrete pipes[J]. ACI Structural Journal,2018,115(6):1671-1681.
    [9] PARK Y, ABOLMAALI A, MOHAMMADAGHA M, et al. Structural performance of dry-cast rubberized concrete pipes with steel and synthetic fibers[J]. Construction and Building Materials,2015,77:218-226. doi: 10.1016/j.conbuildmat.2014.12.061
    [10] 赵凯月, 王艳, 张金团, 等. 混杂纤维混凝土研究现状[J]. 混凝土, 2018(3):132-137, 140. doi: 10.3969/j.issn.1002-3550.2018.03.033

    ZHAO Kaiyue, WANG Yan, ZHANG Jintuan, et al. Research status of hybrid fiber reinforced concrete[J]. Concrete,2018(3):132-137, 140(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.03.033
    [11] 丁一宁, 王卿, 林宇栋. 纤维对开裂后混凝土渗透性及裂缝恢复的影响[J]. 复合材料学报, 2017, 34(8):1853-1861.

    DING Yining, WANG Qing, LIN Yudong. Effect of fibers on permeability and crack relaxation of cracked concrete[J]. Acta Materiae Compositae Sinica,2017,34(8):1853-1861(in Chinese).
    [12] 罗洪林, 杨鼎宜, 周兴宇, 等. 不同长径比聚丙烯纤维增强混凝土的力学特性[J]. 复合材料学报, 2019, 36(8):1935-1948.

    LUO Honglin, YANG Dingyi, ZHOU Xingyu, et al. Mechanical properties of polypropylene fiber reinforced concrete with different aspect ratios[J]. Acta Materiae Compositae Sinica,2019,36(8):1935-1948(in Chinese).
    [13] 梁宁慧, 刘新荣, 孙霁. 多尺度聚丙烯纤维混凝土抗裂性能的试验研究[J]. 煤炭学报, 2012, 37(8):1304-1309.

    LIANG Ninghui, LIU Xinrong, SUN Ji. Experimental study of crack resistance for multi-scale polypropylene fiber reinforced concrete[J]. Journal of China Coal Society,2012,37(8):1304-1309(in Chinese).
    [14] 梁宁慧, 胡杨, 钟杨, 等. 多尺度聚丙烯纤维混凝土孔结构及抗冻性[J]. 重庆大学学报, 2019, 42(11):38-46. doi: 10.11835/j.issn.1000-582X.2019.11.005

    LIANG Ninghui, HU Yang, ZHONG Yang, et al. Study on pore structure and frost resistance of multi-scale polypropylene fiber reinforced concrete[J]. Journal of Chongqing University,2019,42(11):38-46(in Chinese). doi: 10.11835/j.issn.1000-582X.2019.11.005
    [15] 梁宁慧. 多尺度聚丙烯纤维混凝土力学性能试验和拉压损伤本构模型研究[D]. 重庆: 重庆大学, 2014.

    LIANG Ninghui. The mechanics performance test of multi-scale polypropylene fiber concrete and the study of tension and compression damage constitutive model[D]. Chongqing: Chongqing University, 2014(in Chinese).
    [16] 中国国家标准化管理委员会. 混凝土和钢筋混凝土排水管试验方法: GB/T 16752—2017[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of the People’s Republic of China. Test methods of concrete reinforced concrete drainage and sewer pipes: GB/T 16752—2017[S]. Beijing: China Standards Press, 2018(in Chinese).
    [17] American Society for Testing and Materials. Standard test method for concrete pipe, concrete box sections, manhole sections, or tile(metric): ASTM C497—19[S]. West Conshohocken: ASTM, 2019.
    [18] American Society for Testing and Materials. Standard specification for reinforced concrete culvert, storm drain, and sewer pipe: ASTM C76—19a[S]. West Conshohocken: ASTM, 2019.
    [19] FUENTE A D L, FIGUEIREDO A D D, AGUADO A, et al. Steel fibre reinforced concrete pipes. Part 2: Numerical model to simulate the crushing test[J]. Revista IBRACON de Estruturas e Materiais,2012,5(1):12-25. doi: 10.1590/S1983-41952012000100003
    [20] 梁宁慧, 钟杨, 刘新荣. 多尺寸聚丙烯纤维混凝土抗弯韧性试验研究[J]. 中南大学学报(自然科学版), 2017, 48(10):2783-2789. doi: 10.11817/j.issn.1672-7207.2017.10.032

    LIANG Ninghui, ZHONG Yang, LIU Xinrong. Experimental study of flexural toughness for multi-scale polypropylene fiber reinforced concrete[J]. Journal of Central South University (Science and Technology),2017,48(10):2783-2789(in Chinese). doi: 10.11817/j.issn.1672-7207.2017.10.032
    [21] MOHAMED N, NEHDI M L. Rational finite element assisted design of precast steel fibre reinforced concrete pipes[J]. Engineering Structures,2016,124:196-206. doi: 10.1016/j.engstruct.2016.06.014
    [22] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京; 中国建筑工业出版社. 2011.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011(in Chinese).
    [23] 缪庆旭. 多尺度聚丙烯纤维干硬性混凝土拉压性能试验研究[D]. 重庆: 重庆大学, 2019.

    MIAO Qingxu, Experimental study on tensile and compression properties of multi-scale polypropylene fiber roller compacted concrete[D]. Chongqing: Chongqing University, 2019(in Chinese).
    [24] RAZA A, ALI B, REHMAN A U. Structural performance of steel-tube concrete columns confined with CFRPs: Numerical and theoretical study[J]. Iranian Journal of Science and Technology-Transactions of Civil Engineering,2020,45(6):1575-1592.
    [25] AL RIKABI F T, SARGAND S M, HUSSEIN H H. Design proposal for synthetic fiber-reinforced concrete pipes using finite element analysis[J]. Journal of Testing and Evaluation,2020,48(2):871-895.
    [26] 过镇海. 钢筋混凝土原理[M]. 北京: 清华大学出版社, 2013: 26.

    GUO Zhenhai. Principle of reinforced concrete[M]. Beijing: Tsinghua University Press, 2013: 26(in Chinese).
  • 加载中
图(16) / 表(11)
计量
  • 文章访问数:  1089
  • HTML全文浏览量:  431
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 录用日期:  2021-01-16
  • 网络出版日期:  2021-02-04
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回