留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维缠绕GFRP管约束混凝土的轴压性能与设计模型

叶晗晖 徐声亮 茅鸣 布占宇

叶晗晖, 徐声亮, 茅鸣, 等. 纤维缠绕GFRP管约束混凝土的轴压性能与设计模型[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 叶晗晖, 徐声亮, 茅鸣, 等. 纤维缠绕GFRP管约束混凝土的轴压性能与设计模型[J]. 复合材料学报, 2024, 42(0): 1-13.
YE Hanhui, XU Shengliang, MAO Ming, et al. Axial compressive performance and design model of fiber wound GFRP tube confined concrete[J]. Acta Materiae Compositae Sinica.
Citation: YE Hanhui, XU Shengliang, MAO Ming, et al. Axial compressive performance and design model of fiber wound GFRP tube confined concrete[J]. Acta Materiae Compositae Sinica.

纤维缠绕GFRP管约束混凝土的轴压性能与设计模型

基金项目: 宁波市交通运输科技计划(202207);浙江省基础公益研究计划(LGG22E080007);国家自然科学基金(51878606)
详细信息
    通讯作者:

    布占宇,博士,教授,博士生导师,研究方向为桥梁设计理论 E-mail: buzhanyu@nbu.edu.cn

  • 中图分类号: TB332

Axial compressive performance and design model of fiber wound GFRP tube confined concrete

Funds: Transportation Science and Technology Project of Ningbo City (202207); Zhejiang Province Basic Public Welfare Research Project (LGG22E080007); National Natural Science Foundation of China (51878606)
  • 摘要: 设计制作了18组54个纤维缠绕GFRP管约束混凝土圆柱试件,参数包括纤维层数(6、10)、纤维角度($ \pm 45^\circ $、$ \pm 60^\circ $、$ \pm 80^\circ $)、长细比(2、4)和受压截面(全截面、核心混凝土),基于轴心受压试验结果,提出了依据纤维角度的面向设计的峰值应力预测模型。研究结果表明:GFRP管可有效提高约束试件的强度和延性。试件的峰值强度随着纤维角度和层数的增大而增大,长细比大的试件峰值强度的提升幅度更大,全截面受压会对约束试件的环向性能造成不利的影响。约束模式主要由纤维角度决定,其中$ \pm 60^\circ $和$ \pm 80^\circ $角度的试件为强约束,呈脆性破坏,$ \pm 45^\circ $角度的试件为弱约束,呈延性破坏。通过研究峰值强度与有效约束强度之间的数学关系,所得到的面向设计的简化模型,对于求解不同纤维角度试件的峰值强度具有足够的精度,可为相关的工程实际应用提供参考。

     

  • 图  1  纤维缠绕GFRP管

    Figure  1.  Fiber wound GFRP tubes

    图  2  纤维缠绕GFRP管约束混凝土轴心受压加载示意图

    Figure  2.  Axial compression loading diagram of fiber wound GFRP tube confined concrete

    图  3  纤维缠绕GFRP管约束混凝土试验加载现场图

    Figure  3.  Test loading site diagram of fiber wound GFRP tube confined concrete

    图  4  纤维缠绕GFRP管约束混凝土试件表面应变片布置

    Figure  4.  Strain gauge arrangement on specimen surface of fiber wound GFRP tube confined concrete

    图  5  纤维缠绕GFRP管约束混凝土试件破坏形态

    Figure  5.  Failure patterns of fiber wound GFRP tube confined concrete

    图  6  纤维缠绕GFRP管约束混凝土峰值强度

    Figure  6.  Peak strength of fiber wound GFRP tube confined concrete

    图  7  纤维缠绕GFRP管约束混凝土归一化峰值强度和有效约束强度

    Figure  7.  Normalized peak strength and effective confinement strength of fiber wound GFRP tube confined concrete

    图  8  纤维缠绕GFRP管约束混凝土归一化轴向应力-轴向应变及轴向应力-环向应变曲线

    Figure  8.  Normalized axial stress-axial strain and axial stress- hoop strain curve of fiber wound GFRP tube confined concrete

    图  9  纤维缠绕GFRP管约束混凝土轴向-环向应变关系

    Figure  9.  Axial-hoop strain relationship of fiber wound GFRP tube confined concrete

    图  10  纤维缠绕GFRP管约束混凝土约束模式

    Figure  10.  Confinement pattern of fiber wound GFRP tube confined concrete

    图  11  不同纤维角度的纤维缠绕GFRP管约束混凝土的回归结果

    Figure  11.  Regression results of fiber wound GFRP tube confined concrete with different fiber angles

    图  12  纤维缠绕GFRP管约束混凝土的回归公式验证

    Figure  12.  Regression formula verification of fiber wound GFRP tube confined concrete

    表  1  纤维缠绕GFRP管约束混凝土试件参数

    Table  1.   Specimen parameters of fiber wound GFRP tube confined concrete


    Group
    Diameter×
    High/mm
    Compr-ession
    section
    Specimen number θ/(°) n
    F 150$ \times $300 Full section G45 F6-1,2,3 $ \pm 45 $ 6
    G45 F10-1,2,3 10
    G60 F6-1,2,3 $ \pm 60 $ 6
    G60 F10-1,2,3 10
    G80 F6-1,2,3 $ \pm 80 $ 6
    G80 F10-1,2,3 10
    L 150$ \times $600 Full section G45 L6-1,2,3 $ \pm 45 $ 6
    G45 L10-1,2,3 10
    G60 L6-1,2,3 $ \pm 60 $ 6
    G60 L10-1,2,3 10
    G80 L6-1,2,3 $ \pm 80 $ 6
    G80 L10-1,2,3 10
    C 150$ \times $300
    Core concrete
    G45 C6-1,2,3 $ \pm 45 $ 6
    G45 C10-1,2,3 10
    G60 C6-1,2,3 $ \pm 60 $ 6
    G60 C10-1,2,3 10
    G80 C6-1,2,3 $ \pm 80 $ 6
    G80 C10-1,2,3 10
    Notes:In the specimen number, G represents GFRP specimen; 45, 60 and 80 represent fiber wound angle $ \theta $; F, L and C represent the corresponding specimen size and compression section; 6 and 10 represent the number of fiber wound layers $ n $; −1,2,3 represents the three identical specimens.
    下载: 导出CSV

    表  2  纤维缠绕GFRP管性能参数

    Table  2.   Performance parameters of fiber wound GFRP tube

    $ \pm 45^\circ $ $ \pm 60^\circ $ $ \pm 80^\circ $
    $ {E}_{\mathrm{i}\mathrm{a}} $/GPa 29.0 18.0 16.5
    $ {E}_{\mathrm{p}\mathrm{a}} $/GPa 29.0 12.4 9.7
    $ {f}_{\mathrm{c}\mathrm{t}}^{\prime} $/MPa 112.3 102.6 94.4
    $ {\varepsilon }_{\mathrm{c}\mathrm{t}} $/% 0.39 0.83 0.97
    $ {E}_{\mathrm{i}\mathrm{h}} $/GPa 18.0 29.4 35.1
    $ {E}_{\mathrm{p}\mathrm{h}} $/GPa 3.7 23.4 35.1
    $ {f}_{\mathrm{l}\mathrm{t}} $/MPa 111.8 410.2 578.6
    $ {\varepsilon }_{\mathrm{l}\mathrm{t}} $/% 3.01 1.75 1.65
    Notes:$ {E}_{\mathrm{i}\mathrm{a}} $ is the initial axial stiffnes; $ {E}_{\mathrm{p}\mathrm{a}} $ is the secant stiffness at peak axial stress;$ {f}_{\mathrm{c}\mathrm{t}}^{\prime} $ is the peak axial stress; $ {\varepsilon }_{\mathrm{c}\mathrm{t}} $ is the peak axial strain; $ {E}_{\mathrm{i}\mathrm{h}} $ is the initial hoop stiffnes; $ {E}_{\mathrm{p}\mathrm{h}} $ is the secant stiffness at peak hoop stress; $ {f}_{\mathrm{l}\mathrm{t}} $ is the peak hoop stress; $ {\varepsilon }_{\mathrm{l}\mathrm{t}} $ is the peak hoop strain.
    下载: 导出CSV

    表  3  纤维缠绕GFRP管约束混凝土轴压试验结果

    Table  3.   Axial compression test results of fiber wound GFRP tube confined concrete

    Specimen number $ {f}_{\mathrm{c}\mathrm{c}}^{\prime} $/MPa $ {f}_{\mathrm{c}\mathrm{c}}^{\prime}/{f}_{\mathrm{c}\mathrm{o}}^{\prime} $ $ {f}_{\mathrm{l}} $/MPa $ {f}_{\mathrm{l}}/{f}_{\mathrm{c}\mathrm{o}}^{\prime} $ $ {\varepsilon }_{\mathrm{c}\mathrm{c}} $/% $ {\varepsilon }_{\mathrm{f}\mathrm{e}} $/%
    G45 F6-1,2,3 44.1 1.27 5.5 0.16 0.4 /
    G45 F10-1,2,3 49.3 1.42 8.9 0.26 0.9 /
    G60 F6-1,2,3 102.4 2.94 15.5 0.44 2.6 1.4
    G60 F10-1,2,3 124.1 3.57 27.9 0.80 2.7 1.5
    G80 F6-1,2,3 127.5 3.66 16.4 0.47 2.2 1.2
    G80 F10-1,2,3 157.7 4.53 21.6 0.62 2.5 1.2
    G45 L6-1,2,3 39.9 1.72 5.4 0.23 0.5 /
    G45 L10-1,2,3 44.2 1.91 9.2 0.40 0.4 /
    G60 L6-1,2,3 89.9 3.88 18.5 0.80 1.9 1.7
    G60 L10-1,2,3 120.7 5.20 31.4 1.35 2.3 1.7
    G80 L6-1,2,3 117.4 5.06 21.6 0.93 2.2 1.5
    G80 L10-1,2,3 146.1 6.30 26.7 1.15 2.2 1.5
    G45 C6-1,2,3 57.1 1.64 5.6 0.16 0.5 /
    G45 C10-1,2,3 64.8 1.86 9.7 0.28 0.5 /
    G60 C6-1,2,3 122.8 3.53 17.6 0.50 2.3 1.6
    G60 C10-1,2,3 165.8 4.76 29.3 0.84 2.6 1.6
    G80 C6-1,2,3 155.3 4.46 19.4 0.56 2.2 1.4
    G80 C10-1,2,3 183.5 5.27 25.2 0.72 2.6 1.4
    Notes:$ {f}_{\mathrm{c}\mathrm{o}}^{\prime}$ is the compressive strength of unconfined concrete; $ {f}_{\mathrm{c}\mathrm{c}}^{\prime} $ is the peak compressive strength of confined concrete; $ {f}_{\mathrm{l}} $ is the effective restraint strength; $ {\varepsilon }_{\mathrm{c}\mathrm{c}} $ is the peak axial strain; $ {\varepsilon }_{\mathrm{f}\mathrm{e}} $ is the hoop effective confinement strain.
    下载: 导出CSV

    表  4  纤维缠绕GFRP管约束混凝土峰值强度预测公式及指标评价

    Table  4.   Prediction formula and index evaluation of peak strength of fiber wound GFRP tube confined concrete

    Prediction formula$ {f}_{\mathrm{c}\mathrm{c}}^{\prime}/{f}_{\mathrm{c}\mathrm{o}}^{\prime} $$ \mathrm{I}\mathrm{A}\mathrm{E}/\mathrm{\%} $$ \mathrm{M}\mathrm{A}\mathrm{P}\mathrm{E}/\mathrm{\%} $
    Lam[8]$ 1+3.3\left({f}_{\mathrm{l}}/{f}_{\mathrm{c}\mathrm{o}}^{\prime}\right) $24.018.7
    Saafi[9]$ 1+2.2{\left({f}_{\mathrm{l}}/{f}_{\mathrm{c}\mathrm{o}}^{\prime}\right)}^{0.84} $49.128.1
    Karbhari[10]$ 1+2.1{\left({f}_{\mathrm{l}}/{f}_{\mathrm{c}\mathrm{o}}^{\prime}\right)}^{0.87} $53.429.4
    Wu[11]$ 1+2.23{\left({f}_{\mathrm{l}}/{f}_{\mathrm{c}\mathrm{o}}^{\prime}\right)}^{0.96} $50.828.4
    Matthys[12]$ 1+2.3{\left({f}_{\mathrm{l}}/{f}_{\mathrm{c}\mathrm{o}}^{\prime}\right)}^{0.85} $46.027.0
    Youssef[13]$ 1+2.25{\left({f}_{\mathrm{l}}/{f}_{\mathrm{c}\mathrm{o}}^{\prime}\right)}^{1.25} $57.131.4
    Formula 5$ 1+1.38{\left({f}_{\mathrm{l}}/{f}_{\mathrm{c}\mathrm{o}}^{\prime}\right)}^{0.39} $7.98.5
    Formula 6$ 1+1.72{\left({f}_{\mathrm{l}}/{f}_{\mathrm{c}\mathrm{o}}^{\prime}\right)}^{0.96} $9.09.1
    Formula 7$ 1+3.65{\left({f}_{\mathrm{l}}/{f}_{\mathrm{c}\mathrm{o}}^{\prime}\right)}^{0.60} $7.27.7
    Formula 8$ 1+4.86{\left({f}_{\mathrm{l}}/{f}_{\mathrm{c}\mathrm{o}}^{\prime}\right)}^{0.68} $4.95.1
    Notes: $ {f}_{\mathrm{c}\mathrm{c}}^{\prime}/{f}_{\mathrm{c}\mathrm{o}}^{\prime} $ is normalized peak strength; IAE is integral absolute error; MAPE is mean absolute percentage error.
    下载: 导出CSV
  • [1] HARRIES K A, KHAREL G. Experimental investigation of the behavior of variably confined concrete[J]. Cement and Concrete Research, 2003, 33(6): 873-880. doi: 10.1016/S0008-8846(02)01086-4
    [2] LAM L, TENG J G. Ultimate condition of fiber reinforced polymer-confined concrete[J]. Journal of Composites for Construction, 2004, 8(6): 539-548. doi: 10.1061/(ASCE)1090-0268(2004)8:6(539)
    [3] AU C, BUYUKOZTURK O. Effect of fiber orientation and ply mix on fiber reinforced polymer-confined concrete[J]. Journal of Composites for Construction, 2005, 9(5): 397-407. doi: 10.1061/(ASCE)1090-0268(2005)9:5(397)
    [4] CHAALLAL O, HASSAN M, LEBLANC M. Circular columns confined with FRP: experimental versus predictions of models and guidelines[J]. Journal of Composites for Construction, 2006, 10(1): 4-12. doi: 10.1061/(ASCE)1090-0268(2006)10:1(4)
    [5] LI G Q, MARICHERLA D, SINGH K, et al. Effect of fiber orientation on the structural behavior of FRP wrapped concrete cylinders[J]. Composite Structures, 2006, 74(4): 475-483. doi: 10.1016/j.compstruct.2005.05.001
    [6] EID R, ROY N, PAULTRE P. Normal- and high-strength concrete circular elements wrapped with FRP composites[J]. Journal of Composites for Construction, 2009, 13(2): 113-124. doi: 10.1061/(ASCE)1090-0268(2009)13:2(113)
    [7] ISSA C A, CHAMI P, SAAD G. Compressive strength of concrete cylinders with variable widths CFRP wraps: Experimental study and numerical modeling[J]. Construction and Building Materials, 2009, 23(6): 2306-2318. doi: 10.1016/j.conbuildmat.2008.11.009
    [8] LAM L, TENG J G. Design-oriented stress–strain model for FRP-confined concrete[J]. Construction and Building Materials, 2003, 17(6-7): 471-489. doi: 10.1016/S0950-0618(03)00045-X
    [9] SAAFI M, TOUTANJI H A, LI Z J. Behavior of concrete columns confined with fiber reinforced polymer tubes[J]. ACI Materials Journal, 1999, 96(4): 500-509.
    [10] KARBHARI V M, GAO Y Q. Composite jacketed concrete under uniaxial compression-Verification of simple design equations[J]. Journal of Materials in Civil Engineering, 1997, 9(4): 185-193. doi: 10.1061/(ASCE)0899-1561(1997)9:4(185)
    [11] WU Y F, WANG L M. Unified strength model for square and circular concrete columns confined by external jacket[J]. Journal of Structural Engineering, 2009, 135(3): 253-261. doi: 10.1061/(ASCE)0733-9445(2009)135:3(253)
    [12] MATTHYS S, TOUTANJI H, TAERWE L. Stress-strain behavior of large-scale circular columns confined with FRP composites[J]. Journal of Structural Engineering, 2006, 132(1): 123-133. doi: 10.1061/(ASCE)0733-9445(2006)132:1(123)
    [13] YOUSSEF M N, FENG M Q, MOSALLAM A S. Stress-strain model for concrete confined by FRP composites[J]. Composites Part B:Engineering, 2007, 38(5-6): 614-628. doi: 10.1016/j.compositesb.2006.07.020
    [14] 秦国鹏, 王连广, 周乐. GFRP管混凝土组合柱轴压性能研究[J]. 工业建筑, 2009, 39(10): 72-75.

    QIN Guopeng, WANG Lianguang, ZHOU Le. Study on bearing capacity of axially-loaded GFRP tube composite columns filled with concrete[J]. Industrial Construction, 2009, 39(10): 72-75(in Chinese).
    [15] 杨俊杰, 周涛, 章雪峰. FRP管实心混凝土柱承载力的轴压试验研究[J]. 建筑结构, 2014, 44(22): 72-75+89.

    YANG Junjie, ZHOU Tao, ZHANG Xuefeng. Experimental research on bearing capacity of FRP tube solid concrete column under axial loading[J]. Building Structure, 2014, 44(22): 72-75+89(in Chinese).
    [16] 张冰, 魏威, 冯贵森, 等. 纤维角度对GFRP约束混凝土短柱轴压性能的影响[J]. 建筑结构学报, 2019, 40(S1): 192-199.

    ZHANG Bing, WEI Wei, FENG Guisen, et al. Influences of fiber angles on axial compressive behavior of GFRP-confined concrete stub column[J]. Journal of Building Structures, 2019, 40(S1): 192-199(in Chinese).
    [17] BETTS D, SADEGHIAN P, FAM A. Investigation of the stress-strain constitutive behavior of ±55° filament wound GFRP pipes in compression and tension[J]. Composites Part B:Engineering, 2019, 172: 243-252. doi: 10.1016/j.compositesb.2019.05.077
    [18] SILVA M A, RODRIGUES C C. Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRP[J]. Journal of Materials in Civil Engineering, 2006, 18(3): 334-342. doi: 10.1061/(ASCE)0899-1561(2006)18:3(334)
    [19] 龙跃凌, 蔡兆琼, 黄启山, 等. GFRP管约束混凝土短柱轴压性能和尺寸效应研究[J]. 混凝土, 2015, (09): 47-49. [19] 杨俊杰, 杨城. GFRP管混凝土长柱轴压极限承载力研究[J]. 浙江工业大学学报, 2015, 43(06): 685-689+698. doi: 10.3969/j.issn.1002-3550.2015.09.013

    LONG Yueling, CAI Zhaoqiong, HUANG Qishan, et al. Research on axial load behavior and size efects of GFRP confined concrete stub columns[J]. Concrete, 2015, (09): 47-49(in Chinese). doi: 10.3969/j.issn.1002-3550.2015.09.013
    [20] MIRMIRAN A, SHAHAWY M, BEITLEMAN T. Slenderness limit for hybrid FRP-concrete columns[J]. Journal of Composites for Construction, 2001, 5: 26-34. doi: 10.1061/(ASCE)1090-0268(2001)5:1(26)
    [21] 章雪峰, 单鲁阳, 杨城, 等. GFRP管混凝土组合长柱的轴心受压特性研究[J]. 建筑结构, 2018, 48(09): 72-77.

    ZHANG Xuefeng, SHAN Luyang, YANG Cheng, et al. Study on axial compressive capacity characteristics of long concrete-filled GFRP tube composite columns[J]. Building Structure, 2018, 48(09): 72-77(in Chinese).
    [22] 杨俊杰, 杨城. GFRP管混凝土长柱轴压极限承载力研究[J]. 浙江工业大学学报, 2015, 43(06): 685-689+698. doi: 10.3969/j.issn.1006-4303.2015.06.018

    YANG Junjie, YANG Cheng. Research on the bearing capacity of long GFRP-reinforced concrete composite columns subjected to axial compression[J]. Journal of Zhejiang University of Technology, 2015, 43(06): 685-689+698(in Chinese). doi: 10.3969/j.issn.1006-4303.2015.06.018
    [23] 周乐, 王连广, 门兆红. GFRP管高强混凝土组合柱轴心受压试验研究[J]. 公路交通科技(应用技术版), 2009, 5(04): 82-84.

    ZHOU Le, WANG Lianguang, MEN Zhaohong. Experimental study on axial compression of GFRP tube high-strength concrete composite column[J]. Journal of Highway and Transportation Research and Development, 2009, 5(04): 82-84(in Chinese).
    [24] 王玉清, 徐静, 张鑫鑫, 等. GFRP管混凝土短柱轴压力学性能的试验研究[J]. 内蒙古工业大学学报(自然科学版), 2012, 31(02): 64-69.

    WANG Yuqing, XU Jing, ZHANG Xinxin, et al. Experimental resarch on behavior of axially loaded concrete columns confined with GFRP Pipes[J]. Journal of Inner Mongolia University of Technology, 2012, 31(02): 64-69(in Chinese).
    [25] JIN L, LI X R, FAN L L, et al. Size effect on compressive strength of GFRP-confined concrete columns: numerical simulation[J]. Journal of Composites for Construction, 2020, 24(5): 04020038. doi: 10.1061/(ASCE)CC.1943-5614.0001041
    [26] 金浏, 李秀荣, 杜修力, 等. GFRP增强混凝土圆柱轴压强度尺寸效应: 细观分析[J]. 水利学报, 2019, 50(04): 409-419.

    JIN Liu, LI Xiurong, DU Xiuli, et al. Size effect of axial compressive strength of circular concrete columns strengthened by GFRP: A meso-scale analysis[J]. Journal of Hydraulic Engineering, 2019, 50(04): 409-419(in Chinese).
    [27] 张玉强, 武梦洋, 郭启琛, 等. 椭圆形GFRP管混凝土短柱轴压力学性能试验研究[J]. 混凝土, 2020, (08): 7-9+14. doi: 10.3969/j.issn.1002-3550.2020.08.002

    ZHANG Yuqiang, WU Mengyang, GUO Qichen, et al. Experimental research on axial compressive behavior of elliptical concrete-filled GFRP tubular stub columns[J]. Concrete, 2020, (08): 7-9+14(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.08.002
    [28] JUNG W Y, KWON M H, JU B S. Evaluation of compressive strength of concrete members laterally confined by various FRP composites and exposed to high temperatures[J]. Ksce Journal of Civil Engineering, 2015, 20(6): 2410-2419.
    [29] 张云峰, 程凡荣, 李文锦, 等. 冻融循环作用后GFRP管混凝土轴压短柱力学性能[J]. 混凝土, 2022, (06): 13-19. doi: 10.3969/j.issn.1002-3550.2022.06.003

    ZHANG Yunfeng, CHENG Fanrong, LI Wenjin, et al. Mechanical properties of short axially compressed columns of GFRP pipe concrete after freeze-thaw cycles[J]. Concrete, 2022, (06): 13-19(in Chinese). doi: 10.3969/j.issn.1002-3550.2022.06.003
    [30] 梁旭宇, 池寅, 曾彦钦, 等. GFRP管约束超高性能混凝土单轴受压应力-应变关系试验研究[J]. 武汉大学学报(工学版), 2020, 53(06): 498-506.

    LIANG Xuyu, CHI Yin, ZENG Yanqin, et al. Experimental studies on stress-strain relationship of ultra-high performance concrete confined by GFRP tube under uniaxial compression[J]. Engineering Journal of Wuhan University, 2020, 53(06): 498-506(in Chinese).
    [31] HUANG D M, LIU Z Z, MA W T, et al. Steel fiber-reinforced recycled aggregate concrete-filled GFRP tube columns: axial compression performance[J]. Construction and Building Materials, 2023, 403: 133143. doi: 10.1016/j.conbuildmat.2023.133143
    [32] CAO Q, LI H, LIN Z B. Study on the active confinement of GFRP-confined expansive concrete under axial compression[J]. Construction and Building Materials, 2019, 227: 116683. doi: 10.1016/j.conbuildmat.2019.116683
    [33] XIE P, LAM L, JIANG T. Compressive behavior of GFRP tubes filled with self-compacting concrete[J]. Journal of Composites for Construction, 2023, 27(1): 04022103. doi: 10.1061/JCCOF2.CCENG-3937
    [34] DABBAGH H, DELSHAD M, AMOOREZAEI K. Design-oriented stress-strain model for FRP-confined lightweight aggregate concrete[J]. Ksce Journal of Civil Engineering, 2020, 25(1): 219-234.
    [35] 杨霞, 杨文伟, 李顺涛. 采用CFRP增强的GFRP管混凝土短柱轴压性能试验研究[J]. 土木与环境工程学报(中英文), 2022, 44(04): 124-132.

    YANG Xia, YANG Wenwei, LI Shuntao. Experimental study on axial compression behavior of concrete-filled GFRP tube short columns strengthened with CFRP[J]. Journal of Civil and Environmental Engineering, 2022, 44(04): 124-132(in Chinese).
    [36] HE K, CHEN Y. Experimental evaluation of built-in channel steel concrete-filled GFRP tubular stub columns under axial compression[J]. Composite Structures, 2019, 219: 51-68. doi: 10.1016/j.compstruct.2019.03.057
    [37] XUE B, GONG J. Study on steel reinforced concrete-filled GFRP tubular column under compression[J]. Thin-Walled Structures, 2016, 106: 1-8. doi: 10.1016/j.tws.2016.04.023
    [38] YAHIAOUI D, SAADI M, BOUZID T. Compressive behavior of concrete containing glass fibers and confined with glass FRP composites[J]. International Journal of Concrete Structures and Materials, 2022, 16(37): 1-19.
  • 加载中
计量
  • 文章访问数:  75
  • HTML全文浏览量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 修回日期:  2023-12-21
  • 录用日期:  2023-12-30
  • 网络出版日期:  2024-01-30

目录

    /

    返回文章
    返回