留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙酰丙酮铟钝化CsPbBr3量子点及其室温甲醇气敏性能

黄胜 魏天乐 顾修全 霍雨萌 万耔莘 王艳燕

黄胜, 魏天乐, 顾修全, 等. 乙酰丙酮铟钝化CsPbBr3量子点及其室温甲醇气敏性能[J]. 复合材料学报, 2024, 41(6): 2996-3005. doi: 10.13801/j.cnki.fhclxb.20231011.002
引用本文: 黄胜, 魏天乐, 顾修全, 等. 乙酰丙酮铟钝化CsPbBr3量子点及其室温甲醇气敏性能[J]. 复合材料学报, 2024, 41(6): 2996-3005. doi: 10.13801/j.cnki.fhclxb.20231011.002
HUANG Sheng, WEI Tianle, GU Xiuquan, et al. CsPbBr3 quantum dots passivated by acetylacetone indium and their room-temperature methanol gas sensitivity[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2996-3005. doi: 10.13801/j.cnki.fhclxb.20231011.002
Citation: HUANG Sheng, WEI Tianle, GU Xiuquan, et al. CsPbBr3 quantum dots passivated by acetylacetone indium and their room-temperature methanol gas sensitivity[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2996-3005. doi: 10.13801/j.cnki.fhclxb.20231011.002

乙酰丙酮铟钝化CsPbBr3量子点及其室温甲醇气敏性能

doi: 10.13801/j.cnki.fhclxb.20231011.002
基金项目: 江苏省自然科学基金项目(BK20210494);国家自然科学基金(52303356)
详细信息
    通讯作者:

    黄胜,博士,副教授,硕士生导师,研究方向为智能气体传感器 E-mail: huangsheng@cumt.edu.cn

    王艳燕,博士,助理研究员,研究方向为毒品现场快检 E-mail: wangyanyan@iccas.ac.cn

  • 中图分类号: TB332

CsPbBr3 quantum dots passivated by acetylacetone indium and their room-temperature methanol gas sensitivity

Funds: Natural Science Foundation of Jiangsu Province (BK20210494); National Natural Science Foundation of China (52303356)
  • 摘要: 甲醇气体对人体具有毒性,会损害人的神经系统和血液循环系统,开发能够检测甲醇的器件有十分重要的意义。传感器法检测甲醇具有成本低、灵敏度高且可实时监测的优点,但目前主流的甲醇气体传感器主要以金属氧化物为主,存在工作温度高的缺点。本文通过简单的溶液合成法合成了钙钛矿量子点CsPbBr3,并采用乙酰丙酮铟配体(In(Acac)3)来对其表面缺陷进行钝化,获得了室温对甲醇具有较好气敏性的材料。在室温下对体积分数为80×10–6甲醇气体相应灵敏度为0.25,响应恢复时间为11.0 s/17.0 s,在紫外光照射下传感器的气体响应性能进一步提高。传感器具有良好的可再现性和稳定性,传感器在体积分数为80×10–6的甲醇浓度下进行多次测试灵敏度均保持在0.25左右,且在15天内均维持在较高水平。同时,在高湿度、无光照等恶劣条件下依然对甲醇有较好的响应。考虑到金属卤化钙钛矿结构可以很容易通过改变元素来调节性质,该研究方法和实验过程可应用到对其他气体的检测。

     

  • 图  1  CsPbBr3-In薄膜制备以及气体传感器制备流程

    Figure  1.  CsPbBr3-In thin film preparation and gas sensor preparation process

    FTO—F doped SnO2 conductive glass

    图  2  (a) CsPbBr3-In晶体结构和传感器组成图;(b) CsPbBr3-In量子点、CsPbBr3量子点和标准CsPbBr3卡片XRD图谱;((c), (d)) CsPbBr3-In薄膜的SEM、EDS图像;((e), (f)) CsPbBr3-In量子点的TEM、HRTEM图像

    Figure  2.  (a) CsPbBr3-In crystal structure and sensor composition diagram; (b) CsPbBr3-In quantum dots, CsPbBr3 quantum dots, and standard CsPbBr3 card XRD patterns; ((c), (d)) SEM and EDS images of CsPbBr3-In thin films; ((e), (f)) TEM and HRTEM images of CsPbBr3-In quantum dots

    图  3  CsPbBr3和CsPbBr3-In薄膜的XPS图谱:(a) Cs3d;(b) Pb4f;(c) Br3d;(d) In3d;(e) O1s; (f) 全谱

    Figure  3.  XPS spectra of CsPbBr3 and CsPbBr3-In film: (a) Cs3d; (b) Pb4f; (c) Br3d; (d) In3d; (e) O1s; (f) Full spectra

    图  4  CsPbBr3-In和CsPbBr3薄膜的光学表征:(a) 荧光光谱(PL);(b) 时间分辨荧光光谱(TRPL);(c) 紫外可见吸收光谱(UV-vis)

    Figure  4.  Optical characterization of CsPbBr3-In and CsPbBr3 film:(a) Photoluminescence (PL) spectra; (b) Time-resolution photoluminescence (TRPL) spectra; (c) UV-vis spectra

    图  5  CsPbBr3-In在室温下的传感性能:(a) 甲醇体积分数为80×10–6下传感器多次响应曲线;(b) 甲醇体积分数为80×10–6下甲醇的响应恢复时间;(c) CsPbBr3-In传感器对不同浓度甲醇的灵敏度;(d) CsPbBr3传感器对不同浓度甲醇的灵敏度;(e) CsPbBr3-In、CsPbBr3传感器对低浓度甲醇气体的响应曲线;(f) CsPbBr3-In传感器在空气中的稳定性

    Figure  5.  Sensing performance of CsPbBr3-In at room temperature: (a) Multiple response curve of the sensor at a volume fraction of 80×10–6 methanol gas; (b) Response recovery time of methanol at a volume fraction of 80×10–6; (c) Sensitivity of CsPbBr3-In sensor to different concentrations of methanol; (d) Sensitivity of CsPbBr3 sensor to different concentrations of methanol; (e) Response curve of CsPbBr3-In, CsPbBr3 sensor to low concentrations of methanol gas; (f) Stability of CsPbBr3-In sensor in air

    tres—Response time; trec—Recovery time; R0—Starting resistance; R—Real time resistance

    图  6  CsPbBr3-In传感器在不同光照条件下的响应(气体浓度:体积分数80×10–6):(a) 传感器在黑暗条件下对甲醇气体的响应;(b) 传感器在自然光照射下对甲醇气体的响应;(c) 传感器在紫外光照射下对甲醇气体的响应;(d) 传感器在自然光+紫外灯对甲醇气体的响应

    Figure  6.  Response of CsPbBr3-In sensor under different light conditions (Gas concentration: 80×10–6): (a) Response of sensor to methanol gas under dark conditions; (b) Response of sensor to methanol gas under natural light irradiation; (c) Response of sensor to methanol gas under ultraviolet light irradiation; (d) Response of sensor under natural light+ultraviolet lamp

    图  7  传感器对对不同气体和不同湿度环境下的响应情况:((a), (b)) 传感器对体积分数为80×10–6不同气体的灵敏度、响应恢复时间测试;((c), (d)) 传感器在不同湿度条件下对体积分数为80×10–6甲醇气体的响应

    Figure  7.  Sensor response to different gases and humidity environments: ((a), (b)) Sensor sensitivity and response/recovery time test for different gases with a volume fraction of 80×10–6; ((c), (d)) Response of the sensor to a volume fraction of 80×10–6 methanol gas under different humidity conditions

    表  1  用于甲醇检测的各种纳米结构金属氧化物的比较

    Table  1.   Comparison of various nanostructured metal oxides for methanol detection

    Material Temperature/℃ Concentration Sensitivity (R0/R) tres/trec/s Ref.
    CsPbBr3-In RT 80×10–6 1.33 11/17 This work
    SnO2 200 100×10–6 58 4/8 [33]
    CoFe2O4 90 100×10–6 1.42 430/252 [34]
    Zn2SnO4 450 50×10–6 2.25 39/138 [35]
    MoS2/TiO2 240 200×10–6 1.8 80/100 [36]
    In/NiO 300 200×10–6 10.9 273/26 [37]
    Note: RT—Room temperature.
    下载: 导出CSV
  • [1] LEVY P, HEXDALL A, GORDON P, et al. Methanol contamination of Romanian home-distilled alcohol[J]. Journal of Toxicology: Clinical Toxicology, 2003, 41(1): 23-28. doi: 10.1081/CLT-120018267
    [2] 陈金合, 刘小晖. 甲醇汽油毒性研究[J]. 安全与健康, 2016(1): 43-45.

    CHEN Jinhe, LIU Xiaohui. Study on the toxicity of methanol gasoline[J]. Safety and Health, 2016(1): 43-45(in Chinese).
    [3] 冉茂霞, 李莹, 林佳如, 等. 急性甲醇中毒临床特征分析[J]. 中国医药, 2019, 14(9): 1361-1365. doi: 10.3760/j.issn.1673-4777.2019.09.020

    RAN Maoxia, LI Ying, LIN Jiaru, et al. Clinical features of acute methanol poisoning[J]. China Medicine, 2019, 14(9): 1361-1365(in Chinese). doi: 10.3760/j.issn.1673-4777.2019.09.020
    [4] 陈捷敏. 甲醇中毒视网膜功能结构和蛋白质组学研究[D]. 上海: 复旦大学, 2012.

    CHEN Jiemin. Retina functional and morphologic alteration and proteomic analysis after methanol intoxication[D]. Shanghai: Fudan University, 2012(in Chinese).
    [5] KRUSE J A. Methanol poisoning[J]. Intensive Care Medicine, 1992, 18(7): 391-397. doi: 10.1007/BF01694340
    [6] 王泽君, 王梓昂, 郭峰. 纯露中甲醇经口经皮吸入路径下含量合理阈值[J]. 山东化工, 2022, 51(7): 133-135. doi: 10.19319/j.cnki.issn.1008-021x.2022.07.055

    WANG Zejun, WANG Ziang, GUO Feng. Deriving the threshold of methanol in water floral[J]. Shandong Chemical Industry, 2022, 51(7): 133-135(in Chinese). doi: 10.19319/j.cnki.issn.1008-021x.2022.07.055
    [7] JONES A W, MÅRDH G, ÄNGGÅRD E. Determination of endogenous ethanol in blood and breath by gas chromatography-mass spectrometry[J]. Pharmacology Biochemistry and Behavior, 1983, 18: 267-272. doi: 10.1016/0091-3057(83)90184-3
    [8] LAAKSO O, HAAPALA M, JAAKKOLA P, et al. FT-IR breath test in the diagnosis and control of treatment of methanol intoxications[J]. Journal of Analytical Toxicology, 2001, 25: 26-30. doi: 10.1093/jat/25.1.26
    [9] GÜNTNER A T, PINEAU N J, MOCHALSKI P, et al. Sniffing entrapped humans with sensor arrays[J]. Jounal of Analytical Chemistry, 2018, 90(8): 4940-4945. doi: 10.1021/acs.analchem.8b00237
    [10] GHOSH R, GARDNER J W, GUHA P K. Air pollution monitoring using near room temperature resistive gas sensors: A review[J]. IEEE Transactions on Electron Devices, 2019, 66(8): 3254-3264.
    [11] MARKIEWICZ N, CASALS O, FABREGA C, et al. Micro light plates for low-power photoactivated (gas) sensors[J]. Applied Physics Letters, 2019, 114(5): 053508. doi: 10.1063/1.5078497
    [12] AL-ASHOURI A, KÖHNEN E, LI B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction[J]. Science, 2020, 370(6522): 1300-1309.
    [13] LU H Z, LIU Y H, AHLAWAT P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells[J]. Science, 2020, 370(6512): eabb8985.
    [14] XUAN W F, CHEN Y Y, HU D A, et al. Smart mask based on lead-free perovskite humidity sensor for labor intensity grading by breath monitoring[J]. Sensors and Actuators B: Chemical, 2023, 397: 134622.
    [15] YE W, CAO Q C, CHENG X F, et al. A lead-free Cs2PdBr6 perovskite-based humidity sensor for artificial fruit waxing detection[J]. Journal of Materials Chemistry A, 2020, 8(34): 17675-17682. doi: 10.1039/D0TA05193D
    [16] SHAN H S, XUAN W F, LI Z, et al. Room-temperature hydrogen sulfide sensor based on tributyltin oxide functionalized perovskite CsPbBr3 quantum dots[J]. ACS Applied Nano Materials, 2022, 5(5): 6801-6809. doi: 10.1021/acsanm.2c00791
    [17] SIEGLER T D, DUNLAP-SHOHL W A, MENG Y H, et al. Water-accelerated photooxidation of CH3NH3PbI3 perovskite[J]. Journal of the American Chemical Society, 2022, 144(12): 5552-5561.
    [18] BI E B, CHEN H, XIE F X, et al. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells[J]. Nature Communications, 2017, 8: 15330. doi: 10.1038/ncomms15330
    [19] WANG C C, GAO Y L. Stability of perovskites at the surface analytic level[J]. Journal of Physical Chemistry Letters, 2018, 9(16): 4657-4666. doi: 10.1021/acs.jpclett.8b00381
    [20] GARCÍA DE ARQUER F P, ARMIN A, MEREDITH P, et al. Solution-processed semiconductors for next-generation photodetectors[J]. Nature Reviews Materials, 2017, 2(3): 16100. doi: 10.1038/natrevmats.2016.100
    [21] CHEN X, HU H W, XIA Z M, et al. CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection[J]. Journal of Materials Chemistry C, 2017, 5(2): 309-313. doi: 10.1039/C6TC04136A
    [22] 李玥, 谢启飞, 王新中, 等. 提纯溶剂对室温合成CsPbBr3量子点性能的影响[J]. 光子学报, 2019, 48(10): 85-92.

    LI Yue, XIE Qifei, WANG Xinzhong, et al. Effect of purified solvents on the performance of quantum dots synthesized at room temperature[J]. Acta Photonica Sinica, 2019, 48(10): 85-92(in Chinese).
    [23] ZHU L, XU W J, XUAN W F, et al. Perovskite CsPbBr3 quantum dots capped with zinc acetylacetonate: Gas sensing of ethanol in humidity with aid of machine-learning[J]. Materials Science in Semiconductor Processing, 2023, 167: 107790.
    [24] 夏冬林, 付陈承. Ce3+掺杂CsPbBr3纳米晶的制备与性能[J]. 人工晶体学报, 2021, 50(12): 2246-2254.

    XIA Donglin, FU Chencheng. Preparation and properties of Ce3+ doped CsPbBr3 nanocrystals[J]. Journal of Synthetic Crystals, 2021, 50(12): 2246-2254(in Chinese).
    [25] HOAT P D, YUN Y, PARK B, et al. Synthesis of Cs2TeI6 thin film and its NO2 gas-sensing properties under blue-light illumination[J]. Scripta Materialia, 2022, 207: 114305. doi: 10.1016/j.scriptamat.2021.114305
    [26] DIMESSO L, DAS C, STӦHR M, et al. Properties of cesium tin iodide (Cs-Sn-I) systems after annealing under different atmospheres[J]. Materials Chemistry & Physics, 2017, 197: 27-35.
    [27] HUANG W X, MANSER J S, SADHU S, et al. Direct observation of reversible transformation of CH3NH3PbI3 and NH4PbI3 induced by polar gaseous molecules[J]. Journal of Physical Chemistry Letters, 2016, 7(24): 5068-5073.
    [28] QIN M C, CAO J, ZHANG T K, et al. Fused-ring electron acceptor ITIC-Th: A novel stabilizer for halide perovskite precursor solution[J]. Advanced Energy Materials, 2018, 8(18): 1703399. doi: 10.1002/aenm.201703399
    [29] SONG J Z, FANG T, LI J H, et al. Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48[J]. Advanced Materials, 2018, 30(50): 1805409. doi: 10.1002/adma.201805409
    [30] SONG J Z, LI J H, XU L M, et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs[J]. Advanced Materials, 2018, 30(30): 1800764. doi: 10.1002/adma.201800764
    [31] GONG B, SHI T L, ZHU W, et al. UV irradiation-assisted ethanol detection operated by the gas sensor based on ZnO nanowires/optical fiber hybrid structure[J]. Sensors and Actuators B: Chemical, 2017, 245: 821-827.
    [32] DA SILVAL F, M'PEKO J C, CATTO A C, et al. UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature[J]. Sensors and Actuators B: Chemical, 2017, 240: 573-579.
    [33] SONG L M, LUKIANOV A,BUTENKO D, et al. Facile synthesis of hierarchical tin oxide nanoflowers with ultra-high methanol gas sensing at low working temperature[J]. Nanoscale Research Letters, 2019, 14(1): 84.
    [34] HALVAEE P, DEHGHANI S, HOGHOGHIFARD S. Low temperature methanol sensors based on cobalt ferrite nanoparticles, nanorods, and porous nanoparticles[J]. IEEE Sensors Journal, 2020, 20(8): 4056-4062.
    [35] HANH N H, NGOC T M, VAN DUY L, et al. A comparative study on the VOCs gas sensing properties of Zn2SnO4 nanoparticles, hollow cubes, and hollow octahedra towards exhaled breath analysis[J]. Sensors and Actuators B: Chemical, 2021, 343: 130147.
    [36] SINGH S, SHARMA S. Temperature dependent selective detection of ethanol and methanol using MoS2/TiO2 composite[J]. Sensors and Actuators B: Chemical, 2022, 350: 130798. doi: 10.1016/j.snb.2021.130798
    [37] FENG C H, KOU X Y, CHEN B, et al. One-pot synthesis of in doped NiO nanofibers and their gas sensing properties[J]. Sensors and Actuators B: Chemical, 2017, 253: 584-591. doi: 10.1016/j.snb.2017.06.115
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  126
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-15
  • 修回日期:  2023-09-18
  • 录用日期:  2023-09-20
  • 网络出版日期:  2023-10-13
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回