留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含环醚结构的生物基二醇对环己烷二甲醇基聚碳酸酯的性能调控

于化童 蔡晓东 杨烨鑫 焦丹花 张道海

于化童, 蔡晓东, 杨烨鑫, 等. 含环醚结构的生物基二醇对环己烷二甲醇基聚碳酸酯的性能调控[J]. 复合材料学报, 2024, 41(7): 3602-3612.
引用本文: 于化童, 蔡晓东, 杨烨鑫, 等. 含环醚结构的生物基二醇对环己烷二甲醇基聚碳酸酯的性能调控[J]. 复合材料学报, 2024, 41(7): 3602-3612.
YU Huatong, CAI Xiaodong, YANG Yexin, et al. Structural and property modulation of cyclohexanedimethanol-based polycarbonates by bio-based tetrahydrofuran dimethanol with cyclic ether structures[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3602-3612.
Citation: YU Huatong, CAI Xiaodong, YANG Yexin, et al. Structural and property modulation of cyclohexanedimethanol-based polycarbonates by bio-based tetrahydrofuran dimethanol with cyclic ether structures[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3602-3612.

含环醚结构的生物基二醇对环己烷二甲醇基聚碳酸酯的性能调控

基金项目: 国家自然科学基金(22165004);贵州省科技计划项目(黔科合基础[ZK[2021] 一般248;ZK[2021] 一般055;CXTD[2021]005).
详细信息
    通讯作者:

    蔡晓东,博士,副教授,硕士生导师,研究方向为生物基聚酯改性 E-mail: caixiaodong@gzmu.edu.cn

    焦丹花,博士,副教授,硕士生导师,研究方向为生物质复合材料制备与改性 E-mail: jiaodanhua0411@163.com

  • 中图分类号: TQ323.4;TB332

Structural and property modulation of cyclohexanedimethanol-based polycarbonates by bio-based tetrahydrofuran dimethanol with cyclic ether structures

Funds: Natural Science Foundation of China (22165004); Guizhou Provincial Science and Technology Projects (ZK[2021]248, ZK[2021]055; CXTD[2021]005).
  • 摘要: 1,4-环己烷二甲醇基聚碳酸酯具有优异的热力学性能,但因其降解性能的影响,商业应用受到极大的限制。向其分子链中引入脂肪族单元可以有效提高降解能力,但却以牺牲其热力学性能为代价。因此,为了维持热力学与降解性能间的平衡,本文以具有环醚刚性的生物基2,5-四氢呋喃二甲醇(THFDM)为改性单元,采用熔融酯交换缩聚法成功制备了高分子量聚(碳酸1,4-环己烷二甲醇酯-co-碳酸2,5-四氢呋喃二甲醇酯)(PCThC)共聚物。通过NMR探究共聚物的组成和微观结构,证实了共聚物组分间的无规分布;DSC和WAXD结果表明,THFDM单元的引入破坏了PCThC分子链的规整排列,使其结晶能力降低,共聚物从半结晶型过渡到无定型。THFDM中的刚性环结构有效阻止了共聚物Tg的快速下降,保持其较好的热稳定性;THFDM分子中的环结构赋予了聚合物更高的刚度,提高了聚合物的力学性能;此外,THFDM中的醚键改善了PCThC共聚物的亲水性,加快了水解速率,不论是在酸性或碱性缓冲溶液中,共聚物均表现出一定的降解能力。

     

  • 图  1  PCThC共聚物的制备过程

    Figure  1.  Preparation process of PCThC copolymers

    图  2  PCC、PThC和PCThC共聚物的1H-NMR谱图(a),特征峰的放大图(b)

    Figure  2.  1H-NMR spectra of PCC, PThC, and PCThC copolymers (a), Enlarged view of characteristic peaks (b)

    图  3  PCC、PThC和PCThC共聚物的13C-NMR谱图

    Figure  3.  13C-NMR spectra of PCC, PThC, and PCThC Copolymers

    图  4  PCC、PThC和PCThC共聚物特征峰的13C-NMR谱放大图及分配

    Figure  4.  Enlarged 13C-NMR spectra and characteristic peak assignments of PCC, PThC, and PCThC copolymers

    图  5  PCC、PThC和PCThC共聚物的第一次升温DSC曲线图(a),第二次升温DSC曲线图(b)

    Figure  5.  First heating DSC curves (a) and second heating DSC curves (b) of PCC, PThC, and PCThC copolymers

    图  6  共聚物的Tg与共聚物中ThC单元含量的关系

    Figure  6.  The relationship between Tg and ThC unit content of copolymers

    图  7  PCC、PThC和PCThC共聚物的热失重曲线图(TGA)(a),微分曲线图(DTG)(b)

    Figure  7.  Thermal weight loss curves (TGA) (a) and Differential curves (DTG) (b) of PCC, PThC, and PCThC copolymers

    图  8  PCC、PThC和PCThC共聚物的WAXD谱图

    Figure  8.  WAXD spectra of PCC, PThC, and PCThC copolymers

    图  9  PCC、PThC和PCThC共聚物的应变-应力曲线图

    Figure  9.  Strain-stress curves of PCC, PThC, and PCThC copolymers

    图  10  PCC、PThC和PCThC共聚物在水解过程中剩余重量与降解时间的关系图:pH = 2.0(a),pH = 12.0(b)

    Figure  10.  Plot of residual weight versus degradation time during hydrolysis of PCC, PThC, and PCThC copolymers: pH = 2.0 (a),pH = 12.0 (b)

    图  11  PCC、PThC和PCThC共聚物的水接触角测试

    Figure  11.  Water contact angle testing of PCC, PThC, and PCThC copolymers

    表  1  PCC、PThC和PCThC共聚物的分子量和特性粘度

    Table  1.   Molecular weights and characteristic viscosities of PCC, PThC, and PCThC copolymers

    Sample Mn/(g·mol−1) Mw/(g·mol−1) Ð [η]/(dL·g−1)
    PCC 33500 50000 1.49 0.94
    PC95Th5C 42700 65400 1.53 1.10
    PC90Th10C 50500 76100 1.51 1.49
    PC85Th15C 47600 72400 1.52 1.30
    PC70Th30C 41500 68500 1.65 1.19
    PC55Th45C 41300 60200 1.46 1.03
    PC40Th60C 40500 64300 1.59 1.09
    PThC 7300 10700 1.46 0.64
    Notes: Mn and Mw are the number average molecular weight and weight average molecular weight of the polymer; Ð is the molecular weight distribution; [η] is the characteristic viscosity.
    下载: 导出CSV

    表  2  PCC、PThC和PCThC共聚物的组成

    Table  2.   Composition of PCC, PThC, and PCThC copolymers

    Sample ThC unitin feedsa ThC unit in polmersb LnCC LnThC R
    PCC 0 0
    PC95Th5C 0.05 0.03 27.70 1.05 0.99
    PC90Th10C 0.10 0.09 8.36 1.07 1.05
    PC85Th15C 0.15 0.13 5.91 1.14 1.05
    PC70Th30C 0.30 0.22 5.16 1.22 1.01
    PC55Th45C 0.45 0.33 3.97 1.28 1.03
    PC40Th60C 0.60 0.52 2.71 1.42 1.07
    PThC 1 1
    Notes: aMolar fraction of THFDM in the diol (CHDM + THFDM) feed. bMolar fraction of ThC units in PCThC copolymers calculated by 1H-NMR spectroscopy. LnCC and LnThC are the average sequence lengths of CC and ThC units. R is the randomness.
    下载: 导出CSV

    表  3  PCC、PThC和PCThC共聚物的热性能参数

    Table  3.   Thermal property parameters of PCC, PThC, and PCThC copolymers

    SampleTg/℃Tm/℃ΔHm/(J·g−1) Td,5%/℃Td,max/℃Xc/%
    PCC51.6137.721.636841827.7
    PC95Th5C50.3136.618.136741017.7
    PC90Th10C48.7369414
    PC85Th15C46.7363414
    PC70Th30C44.8361412
    PC55Th45C42.6328408
    PC40Th60C34.9321409
    PThC25.3320401
    Notes: Tg and Tm are the glass transition temperature and melting temperature; ΔHm is the enthalpy of melting; Td,5% and Td,max are the decomposition temperature at 5% weight loss and the maximum decomposition rate; Xc is the degree of crystallinity.
    下载: 导出CSV

    表  4  PCC、PThC和PCThC共聚物的力学性能参数

    Table  4.   Mechanical property parameters of PCC, PThC, and PCThC copolymers

    SampleE/MPaσb/MPaεb/%
    PCC351±1529.5±1.8174±24
    PC95Th5C511±3049.6±3.4137±13
    PC90Th10C515±2746.2±2.2127±16
    PC85Th15C570±3222.4±1.1114±7
    PC70Th30C501±2329.7±2.5159±21
    PC55Th45C514±1728.5±1.2284±16
    PC40Th60C93±258.1±0.2261±34
    PThC8±21±0.1445±43
    Notes: E is the Young’s modulus; σb is the tensile strength; εb is the elongation at break.
    下载: 导出CSV
  • [1] 王志凯. 高品质改性双酚A型聚碳酸酯的研究[D]. 长沙: 湖南师范大学, 2014.

    WANG Zhikai. Research on high-quality modified bisphenol A polycarbonate[D]. Changsha: Hunan Normal University, 2014(in Chinese).
    [2] 苏甜, 马念, 胡涛, 等. 双酚A型聚碳酸酯的结晶增速改性研究进展[J]. 高分子通报, 2016, (10): 29-40. doi: 10.14028/j.cnki.1003-3726.2016.010.003

    SU Tian, MA Nian, HU Tao, et al. Modification of bisphenol-a polycarbonate for crystallization-rate enhancement: A state-of-the-art review[J]. Polymer Bulletin, 2016, (10): 29-40(in Chinese). doi: 10.14028/j.cnki.1003-3726.2016.010.003
    [3] LIU Ye, LU Xiaobing. Chemical recycling to monomers: Industrial Bisphenol-A-Polycarbonates to novel aliphatic polycarbonate materials[J]. Journal of Polymer Science, 2022, 60(24): 3256-3268. doi: 10.1002/pol.20220118
    [4] YU Y, PANG C C, JIANG X S, et al. Copolycarbonates based on a bicyclic diol derived from citric acid and flexible 1, 4-cyclohexanedimethanol: From synthesis to properties[J]. ACS Macro Letters, 2019, 8(4): 454-459. doi: 10.1021/acsmacrolett.9b00184
    [5] YAN S D, WU G Z. Hydrolytic degradation of isosorbide-based polycarbonates: Effects of terminal groups, additives, and residue catalysts[J]. Polymer Degradation and Stability, 2021, 192: 109703-109712. doi: 10.1016/j.polymdegradstab.2021.109703
    [6] CHATTI S, SCHWARZ G, KRICHELDORF H R. Cyclic and noncyclic polycarbonates of isosorbide (1, 4:3, 6-dianhydro-d-glucitol)[J]. Macromolecules, 2006, 39(26): 9064-9070. doi: 10.1021/ma0606051
    [7] PARK S A, CHOI J, JU S, et al. Copolycarbonates of bio-based rigid isosorbide and flexible 1, 4-cyclohexanedimethanol: Merits over bisphenol-A based polycarbonates[J]. Polymer, 2017, 116: 153-159. doi: 10.1016/j.polymer.2017.03.077
    [8] 李鑫, 张小舟, 姜佳伟, 等. 异山梨醇型聚碳酸酯共聚物的合成及性能[J]. 塑料, 2021, 50(4): 140-144, 155.

    LI Xin, ZHANG Xiaozhou, JIANG Jiawei, et al. Copolycarbonates synthesis and performance of isosorbide[J]. Plastics, 2021, 50(4): 140-144, 155(in Chinese).
    [9] 刘静月, 侯洪波, 李贤勇, 等. 1, 4-环己烷二甲醇型聚碳酸酯二元醇的合成与表征[J]. 四川轻化工大学学报(自然科学版), 2021, 34(4): 18-24.

    LIU Jingyue, HOU Hongbo, LI Xianyong, et al. Synthesis and characterization of 1, 4-cyclohexane dimethyl alcohol modified polycarbonate diol[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2021, 34(4): 18-24(in Chinese).
    [10] CADU A, SEKINE K, MORMUL J, et al. Homogeneous catalysed hydrogenation of HMF[J]. Green Chemistry, 2018, 20(14): 3386-3393. doi: 10.1039/C8GC01025K
    [11] JIANG F Y, QIU Z B. Crystallization kinetics, mechanical properties, and hydrolytic degradation of novel eco-friendly poly(butylene diglycolate) containing ether linkages[J]. Journal of Applied Polymer Science, 2016, 133(46): 9074-9085.
    [12] GIGLI M, LOTTI N, GAZZANO M, et al. Novel eco-friendly random copolyesters of poly(butylene succinate) containing ether-linkages[J]. Reactive and Functional Polymers, 2012, 72(5): 303-310. doi: 10.1016/j.reactfunctpolym.2012.02.013
    [13] JIN C H, TIAN W H, TU Z, et al. Kilogram-scale production of sustainable PCF copolyesters based on novel cyclic diol THFDM derived from 5-hydroxymethylfurfural: Trade-off between the THFDM structure and various properties of copolyesters[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(39): 13287-13302.
    [14] JIN C H, WANG B, LIU L P, et al. Biodegradable poly(butylene succinate) copolyesters modified by bioresoured 2, 5-tetrahydrofurandimethanol[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(34): 11203-11214.
    [15] JIN C H, MA F H, LI C, et al. Kilogram-scale preparation of sustainable PETG modified with a biobased cyclic diol derived from 5-hydroxymethylfurfural: From synthesis to properties[J]. European Polymer Journal, 2021, 161: 110832-110842. doi: 10.1016/j.eurpolymj.2021.110832
    [16] COLONNA M, BERTI C, BINASSI E, et al. Poly(1, 4-cyclohexylenedimethylene-1, 4-cyclohexanedicarboxylate): Analysis of parameters affecting polymerization and cis–trans isomerization[J]. Polymer International, 2011, 60(11): 1607-1613. doi: 10.1002/pi.3128
    [17] BERTI C, CELLI A, MARCHESE P, et al. Novel copolyesters based on poly(alkylene dicarboxylate)s: 2. Thermal behavior and biodegradation of fully aliphatic random copolymers containing 1, 4-cyclohexylene rings[J]. European Polymer Journal, 2009, 45(8): 2402-2412. doi: 10.1016/j.eurpolymj.2009.04.034
    [18] JIN C H, LIU L P, TU Z, et al. Melt polycondensation of 2, 5-tetrahydrofurandimethanol with various dicarboxylic acids towards a variety of biobased polyesters[J]. Polymer Chemistry, 2022, 13(40): 5718-5729. doi: 10.1039/D2PY00975G
    [19] DIAO L C, SU K M, LI Z H, et al. Furan-based co-polyesters with enhanced thermal properties: poly(1, 4-butylene-co-1, 4-cyclohexanedimethylene-2, 5-furandicarboxylic acid)[J]. RSC Advances, 2016, 6(33): 27632-27639. doi: 10.1039/C5RA27617A
    [20] HU H, ZHANG R Y, YING W B, et al. Sustainable and rapidly degradable poly(butylene carbonate-co-cyclohexanedicarboxylate): Influence of composition on its crystallization, mechanical and barrier properties[J]. Polymer Chemistry, 2019, 10(14): 1812-1822. doi: 10.1039/C9PY00083F
    [21] CAI X D, YANG X G, ZHANG H, et al. Modification of biodegradable poly(butylene carbonate) with 1, 4-cyclohexanedimethylene to enhance the thermal and mechanical properties[J]. Polymer Degradation and Stability, 2017, 143: 35-41. doi: 10.1016/j.polymdegradstab.2017.06.018
    [22] MATOS M, SOUSA A F, SILVA N H C S, et al. Furanoate-based nanocomposites: A case study using poly(butylene 2, 5-furanoate) and poly(butylene 2, 5-furanoate)-co-(butylene diglycolate) and bacterial cellulose[J]. Polymers, 2018, 10(8): 810-825. doi: 10.3390/polym10080810
    [23] LI C T, ZHANG M, WENG Y X, et al. Influence of ether linkage on the enzymatic degradation of PBS copolymers: Comparative study on poly (butylene succinate-co-diethylene glycol succinate) and poly (butylene succinate-co-butylene diglycolic acid)[J]. International Journal of Biological Macromolecules, 2018, 61(6): 1-10.
    [24] FOX T G. Influence of diluent and of copolymer composition on the glass temperature of a poly-mer system[J]. Bull. Am. Phys. Soc., 1956, 1: 123.
    [25] YU D Y, ZHONG J C, PU Z J, et al. Synthesis and properties of biobased polycarbonate based on isosorbitol[J]. Journal of Polymer Research, 2023, 30(6): 204. doi: 10.1007/s10965-023-03562-4
    [26] HONG S, MIN K D, NAM B U, et al. High molecular weight bio furan-based co-polyesters for food packaging applications: Synthesis, characterization and solid-state polymerization[J]. Green Chemistry, 2016, 18(19): 5142-5150. doi: 10.1039/C6GC01060A
    [27] WEI Z Y, LIU L A, QU C, et al. Microstructure analysis and thermal properties of l-lactide/ɛ-caprolactone copolymers obtained with magnesium octoate[J]. Polymer, 2009, 50(6): 1423-1429. doi: 10.1016/j.polymer.2009.01.015
    [28] WANG J G, LIU X Q, ZHU J, et al. Copolyesters based on 2, 5-furandicarboxylic acid (FDCA): Effect of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol units on their properties[J]. Polymers, 2017, 9(12): 305-319.
    [29] GIGLI M, LOTTI N, VERCELLINO M, et al. Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1, 4-cyclohexanedicarboxylate) as promising candidates for biomedical applications[J]. Materials Science and Engineering: C, 2014, 34: 86-97. doi: 10.1016/j.msec.2013.08.013
    [30] ARTHAM T, DOBLE M. Biodegradation of aliphatic and aromatic polycarbonates[J]. Macromolecular Bioscience, 2008, 8(1): 14-24. doi: 10.1002/mabi.200700106
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  93
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-10-24
  • 录用日期:  2023-10-26
  • 网络出版日期:  2023-11-30
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回