留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP筋及钢筋抗浮锚杆承载特性现场试验及荷载-位移模型

白晓宇 刘雪颖 张明义 井德胜 郑晨

白晓宇, 刘雪颖, 张明义, 等. GFRP筋及钢筋抗浮锚杆承载特性现场试验及荷载-位移模型[J]. 复合材料学报, 2021, 38(12): 4138-4149. doi: 10.13801/j.cnki.fhclxb.20210223.003
引用本文: 白晓宇, 刘雪颖, 张明义, 等. GFRP筋及钢筋抗浮锚杆承载特性现场试验及荷载-位移模型[J]. 复合材料学报, 2021, 38(12): 4138-4149. doi: 10.13801/j.cnki.fhclxb.20210223.003
BAI Xiaoyu, LIU Xueying, ZHANG Mingyi, et al. Field tests and load-displacement models of GFRP bars and steel bars for anti-floating anchors[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4138-4149. doi: 10.13801/j.cnki.fhclxb.20210223.003
Citation: BAI Xiaoyu, LIU Xueying, ZHANG Mingyi, et al. Field tests and load-displacement models of GFRP bars and steel bars for anti-floating anchors[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4138-4149. doi: 10.13801/j.cnki.fhclxb.20210223.003

GFRP筋及钢筋抗浮锚杆承载特性现场试验及荷载-位移模型

doi: 10.13801/j.cnki.fhclxb.20210223.003
基金项目: 山东省自然科学基金重点项目(ZR2020KE009);国家自然科学基金(51708316);中国博士后科学基金(2018M632641);山东省博士后创新项目(201903043)
详细信息
    通讯作者:

    张明义,博士,教授,研究方向为土力学及地基基础 E-mail:zmy58@163.com

  • 中图分类号: TU473

Field tests and load-displacement models of GFRP bars and steel bars for anti-floating anchors

  • 摘要: 玻璃纤维增强聚合物(Glass fiber reinforced polymer,GFRP)锚杆是从非金属锚杆中发展出的新型复合材料锚杆,具有自重轻、抗拉强度高、造价低、抗腐蚀性能好、抗电磁干扰能力强等优点。基于某中风化花岗岩场地的GFRP筋及钢筋抗浮锚杆的破坏性拉拔试验,对抗浮锚杆在拉拔过程中锚杆杆体及锚固体的位移进行测量,分析了不同材质、不同锚固长度的抗浮锚杆的承载性能及杆体、锚固体相对滑移量的差异,对比不同荷载-位移模型并获得了最适宜岩石抗浮锚杆的荷载-位移模型。试验结果表明:在中风化花岗岩中,相同锚固长度下的GFRP抗浮锚杆比钢筋抗浮锚杆的破坏荷载增加13%~14%,GFRP抗浮锚杆更易发生杆体拔出破坏,锚固系统仍有残余承载力未发挥,使用GFRP锚杆代替钢筋锚杆具有可行性;与锚固长度为4.5 m的GFRP抗浮锚杆相比,锚固长度为6.5 m的锚杆杆体相对于锚固体的滑移量更大,增大GFRP抗浮锚杆的锚固长度可有效增加其相对滑移量,但提升钢筋抗浮锚杆的锚固长度对其破坏形态无明显影响;双曲线函数及幂函数荷载-位移曲线模型与实测值吻合度较差,指-幂函数曲线模型对本次试验锚杆的破坏荷载预测精度最高,曲线整体走势较一致。

     

  • 图  1  现场拉拔试验装置

    Figure  1.  Field pull-out test device

    图  2  现场拉拔试验过程

    Figure  2.  Field pull-out test process

    图  3  各试验锚杆破坏形式

    Figure  3.  Failure modes of each test anchor

    图  4  试验抗浮锚杆破坏荷载柱状图

    Figure  4.  Test anti-floating bolt failure load histogram

    图  5  抗浮锚杆杆体荷载-位移曲线

    Figure  5.  Load-displacement curves of anti-floating anchors

    图  6  抗浮锚杆上拔过程中锚固体受力示意图

    Figure  6.  Schematic diagram of anchorage body force in the process of anti-floating anchor pulling up

    P—Uplift load of the anti-floating anchor rod; Fc—Interaction force between the anti-floating anchor rod and the mortar; Fc’—Interaction force between the mortar and the soil

    图  7  抗浮锚杆锚固体荷载-位移曲线

    Figure  7.  Load-displacement curves of anti-floating anchor anchorage body

    图  8  抗浮锚杆杆体、锚固体荷载-位移差曲线

    Figure  8.  Load-displacement difference curves of anchorage body and rod body of anti-floating anchor

    图  9  抗浮锚杆荷载-位移(Q-s)曲线模型对比

    Figure  9.  Comparison of load-displacement (Q-s) curve models of anti-floating anchors

    表  1  试验锚杆主要力学参数

    Table  1.   Main mechanical parameters of test bolt

    Anchor materialTensile capacity/kNTensile strength/MPaShear strength/MPaElastic modulus/GPa
    GFRP 416 675 150 41
    Rebar 351 570 277 210
    Note: GFRP—Glass fiber reinforced ploymer.
    下载: 导出CSV

    表  2  抗浮锚杆试验参数

    Table  2.   Anti-floating anchor test parameters

    Anchor numberAnchor rod diameter/mmTotal length of anchor rod/mmLength of anchoring section/mm
    GFRP6.5-1 28 8000 6500
    GFRP6.5-2 28 8000 6500
    GFRP6.5-3 28 8000 6500
    GFRP4.5-1 28 6000 4500
    GFRP4.5-2 28 6000 4500
    GFRP4.5-3 28 6000 4500
    S6.5-1 28 8000 6500
    S6.5-2 28 8000 6500
    S6.5-3 28 8000 6500
    S4.5-1 28 6000 4500
    S4.5-2 28 6000 4500
    S4.5-3 28 6000 4500
    Notes: GFRP6.5—GFRP anti-floating anchors with an anchorage length of 6.5 m; GFRP4.5—GFRP anti-floating anchors with an anchorage length of 4.5 m; S—Steel bar.
    下载: 导出CSV

    表  3  试验结果统计

    Table  3.   Test results statistics

    Anchor numberAnchor length/mFailure load/kNMaximum rod lift/mmAnchor solid limit lift/mmDestruction form
    GFRP4.5-1 4.5 381 17.03 12.67 Shear slip failure
    GFRP4.5-2 4.5 394 15.21 11.47 Disconnect failure
    GFRP4.5-3 4.5 375 16.74 11.35 Shear slip failure
    GFRP6.5-1 6.5 412 14.89 12.25 Disconnect failure
    GFRP6.5-2 6.5 387 18.26 13.27 Shear slip failure
    GFRP6.5-3 6.5 398 15.16 12.45 Disconnect failure
    S4.5-1 4.5 320 58.05 15.89 Shear slip failure
    S4.5-2 4.5 331 13.21 8.47 Disconnect failure
    S4.5-3 4.5 323 12.28 8.13 Disconnect failure
    S6.5-1 6.5 362 15.09 11.67 Disconnect failure
    S6.5-2 6.5 342 15.39 12.16 Disconnect failure
    S6.5-3 6.5 339 10.49 7.58 Disconnect failure
    下载: 导出CSV

    表  4  抗浮锚杆各Q-s模型极限承载力计算精度

    Table  4.   Calculation accuracy of ultimate bearing capacity of each Q-s models of anti-floating anchors

    Anchor
    number
    Measured
    ultimate
    bearing
    capacity/kN
    Hyperbolic function
    model
    Exponential function
    model
    Power function
    model
    Exponential-power
    function model
    Predictive
    value/kN
    Relative
    error/%
    Predictive
    value/kN
    Relative
    error/%
    Predictive
    value/kN
    Relative
    error/%
    Predictive
    value/kN
    Relative
    error/%
    GFRP4.5-1 360 278.23 −22.71 313.99 −12.78 227.57 −36.79 359.07 −0.26
    GFRP4.5-2 360 262.85 −26.99 296.55 −17.63 164.16 −54.40 361.07 0.30
    GFRP4.5-3 360 290.05 −19.43 328.15 −8.85 244.42 −32.11 333.78 −7.28
    GFRP6.5-1 400 298.83 −25.29 337.03 −15.74 212.65 −46.84 400.46 0.11
    GFRP6.5-2 360 289.59 −19.56 329.96 −8.34 248.10 −31.08 338.92 −5.86
    GFRP6.5-3 360 279.14 −22.46 315.20 −12.44 236.94 −34.18 361.56 0.43
    S4.5-2 320 284.07 −11.23 316.87 −0.98 279.69 −12.60 316.57 −1.07
    S4.5-3 320 274.58 −14.19 312.61 −2.31 243.22 −23.99 317.41 −0.81
    S6.5-1 320 322.31 0.72 358.41 12.00 264.35 −17.39 343.00 7.19
    S6.5-2 360 265.38 −26.28 305.39 −15.17 202.11 −43.86 315.21 −12.44
    S6.5-3 320 273.44 −14.55 313.01 −2.18 217.35 −32.08 319.78 −0.07
    下载: 导出CSV

    表  5  抗浮锚杆各Q-s模型计算参数

    Table  5.   Calculation parameters of each Q-s models of anti-floating anchors

    Anchor
    number
    Hyperbolic function
    model α
    Exponential function
    model β/mm−1
    Power function
    model Ki/(kN·mm−1)
    Exponential-power function model
    abk
    GFRP4.5-1 4.0254 −0.1454 34.4828 0.0023 −0.0729 −0.9053
    GFRP4.5-2 5.6219 −0.1141 20.6718 0.2949 −0.0660 186.4119
    GFRP4.5-3 4.0374 −0.1449 49.3827 0.2360 3.8378 −0.9430
    GFRP6.5-1 5.0408 −0.1242 32.1285 −0.0224 −0.0673 0.3136
    GFRP6.5-2 4.4397 −0.1360 47.6191 0.2325 1.0623 −0.8018
    GFRP6.5-3 4.3914 −0.1374 49.3827 0.0031 −0.0664 −0.9239
    S4.5-2 1.6707 −0.3502 173.9130 0.4572 1.8488 −0.8234
    S4.5-3 2.0314 −0.3069 91.9540 0.4843 0.0940 0.4394
    S6.5-1 1.7642 −0.3595 72.7273 0.1578 0.0407 −0.7045
    S6.5-2 3.1663 −0.2006 38.2775 0.3956 110.2263 −0.9961
    S6.5-3 1.7852 −0.3648 70.1754 0.8980 0.2717 1.2221
    Note: a, b, k—Parameters to be fitted.
    下载: 导出CSV
  • [1] KUANG Z, ZHANG M Y, BAI X Y. Load-bearing characteristics of fibreglass uplift anchors in weathered rock[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering,2020,173(1):49-57. doi: 10.1680/jgeen.18.00195
    [2] LI F, ZHAO Q L, CHEN H S, et al. Interface shear stress analysis of bond FRP tendon anchorage under different boundary conditions[J]. Composite Interfaces,2011,18(2):91-106. doi: 10.1163/092764411X571427
    [3] 白晓宇, 张明义, 匡政, 等. 全长黏结GFRP抗浮锚杆荷载分布函数模型研究[J]. 中南大学学报(自然科学版), 2020, 51(7):1977-1988. doi: 10.11817/j.issn.1672-7207.2020.07.023

    BAI Xiaoyu, ZHANG Mingyi, KUANG Zheng, et al. Load distribution function model of full-length bond GFRP anti-floating anchor[J]. Journal of Central South University (Science and Technology),2020,51(7):1977-1988(in Chinese). doi: 10.11817/j.issn.1672-7207.2020.07.023
    [4] ALVES J, EL-RAGABY A, EL-SALAKAWY E. Durability of GFRP bars’ bond to concrete under different loading and environmental conditions[J]. Journal of Composites for Construction,2010,15(3):249-262.
    [5] 贾金青, 宋二祥. 滨海大型地下工程抗浮锚杆的设计与试验研究[J]. 岩土工程学报, 2002, 24(6):769-771. doi: 10.3321/j.issn:1000-4548.2002.06.021

    JIA Jinqing, SONG Erxiang. Design and Experimental study of anti-floating anchor rods for large-scale underground engineering in binhai[J]. Chinese Journal of Geotechnical Engineering,2002,24(6):769-771(in Chinese). doi: 10.3321/j.issn:1000-4548.2002.06.021
    [6] 张乐文, 汪稔. 岩土锚固理论研究之现状[J]. 岩土力学, 2002, 23(5):627-631. doi: 10.3969/j.issn.1000-7598.2002.05.022

    ZHANG Lewen, WANG Ren. Current status of research on rock-soil anchoring theory[J]. Rock and Soil Mechanics,2002,23(5):627-631(in Chinese). doi: 10.3969/j.issn.1000-7598.2002.05.022
    [7] 白晓宇, 郑晨, 张明义, 等. 大直径GFRP抗浮锚杆蠕变试验及蠕变模型[J]. 岩土工程学报, 2020, 42(7):1304-1311.

    BAI Xiaoyu, ZHENG Chen, ZHANG Mingyi, et al. Creep tests and standard linear solid model for large-diameter glass fiber-reinforced polymer anti-floating anchors[J]. Chinese Journal of Geotechnical Engineering,2020,42(7):1304-1311(in Chinese).
    [8] TASTANI S P, PANTAZOPOU S J. Bond of GFRP bars in concrete: Experimental study and analytical interpretation[J]. Journal of Composites for Construction,2006,10(5):381-391. doi: 10.1061/(ASCE)1090-0268(2006)10:5(381)
    [9] 黄生文, 邱贤辉, 罗文兴. GFRP锚杆锚固特性研究[J]. 长沙理工大学学报(自然科学版), 2009, 6(3):33-39.

    HUANG Shengwen, QIU Xianhui, LUO Wenxing. Research on anchoring characteristics of GFRP anchor rod[J]. Journal of Changsha University of Science and Technology (Natural Science Edition),2009,6(3):33-39(in Chinese).
    [10] 张明义, 寇海磊, 白晓宇, 等. 玻璃纤维增强聚合物抗浮锚杆抗拔性能试验研究与机制分析[J]. 岩土力学, 2014, 35(4):1069-1076.

    ZHANG Mingyi, KOU Hailei, BAI Xiaoyu, et al. Experimental research and mechanism analysis of the anti-floating anchor rod pull-out performance of glass fiber reinforced polymer[J]. Rock and Soil Mechanics,2014,35(4):1069-1076(in Chinese).
    [11] KOU H L, GUO W, ZHANG M Y. Pullout performance of GFRP anti-floating anchor in weathered soil[J]. Tunnelling and Underground Space Technology, 2015, 49: 408-416.
    [12] 尤志嘉, 付厚利, 尤春安, 等. 土层锚固体应力传递机制[J]. 岩土力学, 2018, 39(1):85-92.

    YOU Zhijia, FU Houli, YOU Chun’an, et al. Stress transfer mechanism of soil anchorage[J]. Rock and Soil Mechanics,2018,39(1):85-92(in Chinese).
    [13] GOORANORIMI O, SUARIS W, NANNI A. A model for the bond-slip of a GFRP bar in concrete[J]. Engineering Structures,2017,146:34-42. doi: 10.1016/j.engstruct.2017.05.034
    [14] 中国建筑科学研究院. 建筑基坑支护技术规程: JGJ120—2012[S]. 北京: 中国建筑工业出版社, 2012.

    China Academy of Building Research. Technical specification for foundation pit support: JGJ120—2012[S]. Beijing: China Building Industry Press, 2012(in Chinese).
    [15] 中国建筑科学研究院. 建筑地基基础设计规范: GB50007—2011[S]. 北京: 中国建筑工业出版社, 2011.

    China Academy of Building Research. Code for design of building foundation: GB50007—2011[S]. Beijing: China Building Industry Press, 2011(in Chinese).
    [16] HYETT A J, BAWDEN W F, MACSPORRAN G R, et al. A constitutive law for bond failure of fully-grouted cable bolts using a modified Hoek cell[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(1):11-36.
    [17] 付文光, 柳建国, 杨志银. 抗浮锚杆及锚杆抗浮体系稳定性验算公式研究[J]. 岩土工程学报, 2014, 36(11):1971-1982. doi: 10.11779/CJGE201411002

    FU Wenguang, LIU Jianguo, YANG Zhiyin. Study on the formula for checking the stability of anti-floating anchor rod and anti-floating system of anchor rod[J]. Chinese Journal of Geotechnical Engineering,2014,36(11):1971-1982(in Chinese). doi: 10.11779/CJGE201411002
    [18] 王贤能, 曾卫东, 徐金台. 岩石抗浮锚杆的应用及分析[C]//中国岩石力学与工程学会第七次学术大会论文集. 西安, 2002: 831−835.

    WANG Xianneng, ZENG Weidong, XU Jintai. Application and analysis of rock anti-floating anchor[C]// Proceedings of the Seventh Academic Conference of Chinese Society of Rock Mechanics and Engineering. Xi’an, 2002: 831−835.
    [19] 贾金青, 宋二祥. 滨海大型地下工程抗浮锚杆的设计与试验研究[J]. 岩土工程学报, 2002, 24(6):669-771.

    JIA Jinqing, SONG Erxiang. Design and experimental study of anti-floating anchor in Binhai large underground project[J]. Journal of Geotechnical Engineering,2002,24(6):669-771(in Chinese).
    [20] 陈根全. 锚杆桩的抗拔试验[J]. 工程勘察, 1997, 25(2):15-16.

    CHEN Genquan. Uplift test of anchor pile[J]. Engineering Survey,1997,25(2):15-16(in Chinese).
    [21] 赵卫平, 朱彬荣. 高温后HSC粘结滑移基础参数测量与3D有限元数值模拟[J]. 工程力学, 2017, 34(4):177-186.

    ZHAO Weiping, ZHU Binrong. Measurement of HSC bond slip foundation parameters and 3D finite element numerical Simulation after high temperature[J]. Engineering Mechanics,2017,34(4):177-186(in Chinese).
    [22] 刘凌锋. FRP管与混凝土的粘结性能试验研究[D]. 南京: 东南大学, 2016.

    LIU Lingfeng. Experimental Study on bond performance of FRP pipe and concrete[D]. Nanjing: Southeast University, 2016(in Chinese).
    [23] 张季如, 唐保付. 锚杆荷载传递机理分析的双曲函数模型[J]. 岩土工程学报, 2002, 24(2):188-192. doi: 10.3321/j.issn:1000-4548.2002.02.013

    ZHANG Jiru, TANG Baofu. Hyperbolic function model to analyze load transfer mechanism on bolts[J]. Chinese Journal of Geotechnical Engineering,2002,24(2):188-192(in Chinese). doi: 10.3321/j.issn:1000-4548.2002.02.013
    [24] 应志民, 张洁, 尚岳全. 锚杆荷载-位移曲线的指数函数模型研究[J]. 岩土力学, 2005, 26(8):1331-1334. doi: 10.3969/j.issn.1000-7598.2005.08.028

    YING Zhimin, ZHANG Jie, SHANG Yuequan. Exponential model for simulating load-displacement curve of anchor rod[J]. Rock and Soil Mechanics,2005,26(8):1331-1334(in Chinese). doi: 10.3969/j.issn.1000-7598.2005.08.028
    [25] 许宏发, 钱七虎, 金丰年. 描述抗拔桩荷载-位移曲线的幂函数模型[J]. 岩土工程学报, 2000, 22(5):622-624. doi: 10.3321/j.issn:1000-4548.2000.05.026

    XU Hongfa, QIAN Qihu, JIN Fengnian. Power function model to describe load-displacement curve of tension pile[J]. Chinese Journal of Geotechnical Engineering,2000,22(5):622-624(in Chinese). doi: 10.3321/j.issn:1000-4548.2000.05.026
    [26] 孙晓云, 张涛, 王明明, 等. 基于改进指-幂混合函数模型的锚杆承载力预测方法研究[J]. 岩石力学与工程学报, 2015, 34(8):1641-1649.

    SUN Xiaoyun, ZHANG Tao, WANG Mingming, et al. A revised model for predicting the bearing capacity of rock bolts based on mixed exponential and power unction[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(8):1641-1649(in Chinese).
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  1085
  • HTML全文浏览量:  369
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 录用日期:  2021-02-02
  • 网络出版日期:  2021-02-23
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回