留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP感应加热线圈中心区域温度场

付天宇 许家忠 赵辉 刘美军

付天宇, 许家忠, 赵辉, 等. CFRP感应加热线圈中心区域温度场[J]. 复合材料学报, 2021, 38(10): 3314-3322. doi: 10.13801/j.cnki.fhclxb.20201216.001
引用本文: 付天宇, 许家忠, 赵辉, 等. CFRP感应加热线圈中心区域温度场[J]. 复合材料学报, 2021, 38(10): 3314-3322. doi: 10.13801/j.cnki.fhclxb.20201216.001
FU Tianyu, XU Jiazhong, ZHAO Hui, et al. Temperature field in the central area of CFRP induction heating coil[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3314-3322. doi: 10.13801/j.cnki.fhclxb.20201216.001
Citation: FU Tianyu, XU Jiazhong, ZHAO Hui, et al. Temperature field in the central area of CFRP induction heating coil[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3314-3322. doi: 10.13801/j.cnki.fhclxb.20201216.001

CFRP感应加热线圈中心区域温度场

doi: 10.13801/j.cnki.fhclxb.20201216.001
基金项目: “十三五”国家重大研发计划项目(2017YFD0600802);国家自然基金重点项目(91948202)
详细信息
    通讯作者:

    许家忠,研究生,教授,博士生导师,研究方向为纤维缠绕、电磁加热及温度控制  E-mail:xujiazhong@126.com

  • 中图分类号: TB332

Temperature field in the central area of CFRP induction heating coil

  • 摘要: 感应加热技术是实现碳纤维增强树脂复合材料(CFRP)低能耗高效固化成型的有效方法,提高CFRP感应加热温度场均匀性是保证成型质量的关键,而线圈中心区域温度场均匀性是保证材料整体温度均匀性的关键。根据电磁加热原理建立了CFRP有限元多场耦合的分析模型,通过对模拟计算和实验过程的温度场升温及分布情况的对比分析,证明了本仿真可以准确模拟CFRP感应加热温度场分布。根据图像的熵值理论将温度场均匀性通过熵值大小进行表示,实现了CFRP感应加热温度场均匀性的量化分析,并通过有限元模型计算研究了线圈直径及线圈与材料间距对线圈中心区域温度场均匀性的影响,得到了中心区域温度场均匀性与线圈直径及材料间距之间的关系曲线,为组合式线圈均匀加热CFRP提供了线圈直径及材料间距大小选择的理论依据。

     

  • 图  1  感应加热过程中多物理场耦合示意图

    Figure  1.  Multi-physical field coupling diagram in induction heating

    H(A/m)—Magnetic field intensity vector; J(A/m2)—Current density in vector form; μ0—Vacuum permeability; μr—Relative permeability; A(Wb/m)—Magnetic vector potential; E(V/m)—Induced electric field; f(Hz)—Magnetic field frequency; Qrh(W/m3)—Heat source; ρ(kg/m3)—Density; Cp(J/(kg·K))—Specific heat capacity; k(W/(m·K))—Thermal conductivity; μ(m/s)—Flow rate of resin when heated; h(W/m2K)—Heat transfer coefficient determined by boundary type and surface properties; Tamb—Outside air temperature; T—Surface temperature of heated material

    图  2  碳纤维增强树脂复合材料(CFRP)几何模型建立过程

    Figure  2.  Process chart for establishing a geometric model of carbon fiber reinforced polymer (CFRP)

    图  3  纤维织构网格划分质量图

    Figure  3.  Meshing quality map of fiber texture

    图  4  纤维束曲线坐标系

    Figure  4.  Illustration of fiber bundle curve coordinate system

    图  5  磁场作用下碳纤维织构中产生的涡旋电场

    Figure  5.  Eddy current field generated by the carbon fiber texture under the magnetic field

    图  6  碳纤维织构发热量分布

    Figure  6.  Heat generation in the carbon fiber texture

    图  7  加热过程中碳纤维织构的温度分布

    Figure  7.  Temperature distribution of carbon fiber texture during heating

    图  8  稳态时CFRP中纤维织构和表面温度分布

    Figure  8.  Fiber texture and surface temperature distribution of CFRP in the steady-state

    图  9  感应加热过程中CFRP相对升温曲线

    Figure  9.  Relative hating curves of CFRP during induction heating

    图  10  线圈直径为80 mm时的CFRP温度分布

    Figure  10.  CFRP temperature distribution when the coil diameter is 80 mm

    图  11  线圈直径为140 mm时的CFRP温度分布

    Figure  11.  CFRP temperature distribution when the coil diameter is 140 mm

    图  12  不同直径CFRP线圈中心区域温度分布的灰度图像

    Figure  12.  Gray image of temperature distribution in the central area of CFRP coils with different diameters

    图  13  CFRP线圈直径与熵值及最大温差曲线

    Figure  13.  Variation of CFRP coil diameter, entropy and maximum temperature difference curves

    图  14  CFRP线圈间距与熵值及最高温度数值曲线

    Figure  14.  Numerical curves of CFRP coil spacing, entropy and maximum temperature

    表  1  CFRP几何模型中各材料赋值的参数

    Table  1.   Simulation parameters used in the CFRP geometric model

    AirCarbon fiber bundleResinCoils
    Thermal conductivity/(W·(m·K)−1) (20,4,4) 0.2
    Heat capacity/(J·(kg·K)−1) 1000 1000
    Density/(kg·m−3) 1500 1200 8960
    Electrical conductivity/(S·m−1) 0 (4.8×104,0,0) 1×10−2 6×107
    Relative permittivity 1 3.2 1
    Relative permeability 1 1 1 1
    Notes: Parameter acquisition. COMSOL built-in material library[24] and provided by the manufacturer.
    下载: 导出CSV
  • [1] BAYERL T, DUHOVIC M, MITSCHANG P, et al. The heating of polymer composites by electromagnetic induction—A review[J]. Composites Part A: Applied Science and Manufacturing,2014,57:27-40. doi: 10.1016/j.compositesa.2013.10.024
    [2] SCHIELER O, BEIER U, MITSCHANG P. Control of the through thickness temperature distribution in carbon composite aerospace parts during induction welding[J]. Journal of Thermoplastic Composite Materials,2017,31(12):1587-1608.
    [3] 曹维宇, 杨学萍, 张藕生. 我国高性能高分子复合材料发展现状与展望[J]. 中国工程科学, 2020, 22(5):112-120.

    CAO Weiyu, YANG Xueping, ZHANG Ousheng. Development and prospect of high performance polymer compo-sites in China[J]. Strategic Study of CAE,2020,22(5):112-120(in Chinese).
    [4] 邢丽英, 冯志海, 包建文, 等. 碳纤维及复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11):2700-2706.

    XING Liying, FENG Zhihai, BAO Jianwen, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica,2020,37(11):2700-2706(in Chinese).
    [5] 包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(19):52-63.

    BAO Jianwen, JIANG Shicai, ZHANG Daijun. Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review,2018,36(19):52-63(in Chinese).
    [6] ABLIZ D, YUGANG D. Curing methods for advanced polymer composites-A review[J]. Polymers & Polymer Composites,2013,21(6):101-106.
    [7] SUN X F, MA S N, LIU H W. Research on properties of carbon fiber/epoxy resin composite material by microwave curing[J]. Rare Metal Materials and Engineering,2012,41:422-424.
    [8] 刘怡, 朱光明. 纤维增强树脂基复合材料固化工艺的发展[J]. 中国塑料, 2018, 32(6):1-9.

    LIU Yi, ZHU Guangming. Development of curing process for fiber-reinforced resin matrix composites[J]. China Plastics,2018,32(6):1-9(in Chinese).
    [9] RICCIO A, RUSSO A, RAIMONDO A, et al. A numerical/ experimental study on the induction heating of adhesives for composite materials bonding[J]. Materials Today Communications,2018,15:203-213. doi: 10.1016/j.mtcomm.2018.03.008
    [10] SERGEANT P L, DUPRE L R, DEWULF M. Optimizing active and passive magnetic shields in induction heating by a genetic algorithm[J]. IEEE Transactions on Magnetics,2003,39(6):3486-3496. doi: 10.1109/TMAG.2003.819460
    [11] HAN Y, WEN H Y, YU E L. Study on electromagnetic heating process of heavy-duty sprockets with circular coils and profile coils[J]. Applied Thermal Engineering,2016,100:861-868. doi: 10.1016/j.applthermaleng.2016.01.161
    [12] MENANA H, FELIACHI M. An integro-differential model for 3D Eddy current computation in carbon fiber reinforced polymer composites[J]. IEEE Transactions on Magnetics,2011,47(4):756-763. doi: 10.1109/TMAG.2010.2102770
    [13] RUDOLF R, MITSCHANG P, NEITZEL M. Induction heating of continuous carbon-fiber-reinforced thermoplastics[J]. Composites Part A: Applied Science and Manufacturing,2000,31:1191-1202. doi: 10.1016/S1359-835X(00)00094-4
    [14] WASSELYNCK G, TRICHET D, RAMDANE B. Interaction between electromagnetic field and CFRP materials: A new multiscale homogenization approach[J]. IEEE Transactions on Magnetics,2010,46(8):3277-3280. doi: 10.1109/TMAG.2010.2045359
    [15] WANG K F, CHANDRASEKAR S, YANG H T Y. Finite-element simulation of moving induction heat treatment[J]. Journal of Materials Engineering and Performance,1995,4(4):460-473. doi: 10.1007/BF02649308
    [16] BOKOTA A, SAWOMIR I. Numerical analysis of phase transformations and residual stresses in steel cone-shaped elements hardened by induction and flame methods[J]. International Journal of Mechanical Sciences,1998,40(6):617-629. doi: 10.1016/S0020-7403(97)00084-2
    [17] KIM H J, SHRIDHAR Y, JOHN W. A study on the induction heating of carbon fiber reinforced thermoplastic composites[J]. Advanced Composite Materials,2002,11(1):71-80. doi: 10.1163/156855102753613309
    [18] LUNDSTRÖM F, FROGNER K, WIBERG O, et al. Induction heating of carbon fiber composites: Investigation of electrical and thermal properties[J]. International Journal of Applied Electromagnetics and Mechanics,2017,53:S21-S30. doi: 10.3233/JAE-162235
    [19] WASSELYNCK G, TRICHET D, RAMDANE B. Microscopic and macroscopic electromagnetic and thermal modeling of carbon fiber reinforced polymer composites[J]. IEEE Transactions on Magnetics,2011,47:1114-1117. doi: 10.1109/TMAG.2010.2073456
    [20] JUN C, JINHAO Q, TOSHIYUKI T. Numerical analysis of correlation between fibre orientation and eddy current testing signals of carbon-fibre reinforced polymer compo-sites[J]. International Journal of Applied Electromagne-tics and Mechanics,2012,39(1-4):251-259. doi: 10.3233/JAE-2012-1468
    [21] MILLER A K, CHANG C, PAYNE A, et al. The nature of induction heating in graphite-fiber-polymer-matrix compo-site materials[J]. Sampe Journal,1990,26(4):37-54.
    [22] FRAUENHOFER M, KUNZ H, DILGER K. Fast curing of adhesives in the field of CFRP[J]. International Journal of Adhesion and Adhesives,2012,88(4-6):406-417.
    [23] TZENG J T, HSIEH K T. Electromagnetic analysis of composite structures subjected to transient magnetic fields[J]. Journal of Composite Materials,2019,54(6):745-752.
    [24] COMSOL Multiphysics Reference Manual Version: COMSOL 5.2a, 2016.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  1098
  • HTML全文浏览量:  478
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 录用日期:  2020-12-08
  • 网络出版日期:  2020-12-16
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回