留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别

钱奇伟 张昕 杨贞军 沈镇 校金友

钱奇伟, 张昕, 杨贞军, 等. 基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别[J]. 复合材料学报, 2024, 41(7): 3540-3547.
引用本文: 钱奇伟, 张昕, 杨贞军, 等. 基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别[J]. 复合材料学报, 2024, 41(7): 3540-3547.
QIAN Qiwei, ZHANG Xin, YANG Zhenjun, et al. Intelligent identification of micro components and defects of 3D braided C/C composites based on deep learning of X-ray CT images[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3540-3547.
Citation: QIAN Qiwei, ZHANG Xin, YANG Zhenjun, et al. Intelligent identification of micro components and defects of 3D braided C/C composites based on deep learning of X-ray CT images[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3540-3547.

基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别

基金项目: 国家自然科学基金(52173300);湖北省重点研发计划(2020BAB052)
详细信息
    通讯作者:

    杨贞军,博士,教授,博士生导师,研究方向为复杂材料多尺度随机断裂损伤力学理论、计算模拟和实验验证 E-mail: zhjyang@whu.edu.cn

  • 中图分类号: TB332

Intelligent identification of micro components and defects of 3D braided C/C composites based on deep learning of X-ray CT images

Funds: National Natural Science Foundation of China (52173300); Key Research and Development Programme of Hubei Province (2020BAB052)
  • 摘要: 首先采用微观X射线计算断层扫描(Micro X-ray computed tomography, XCT)对四枚20 mm立方体三维编织碳/碳(Carbon fiber reinforced carbon, C/C)复合材料试件进行扫描,获得精度为18 μm的内部微观结构图像;然后采用基于深度学习的语义分割算法,对大量二维XCT图像进行训练,实现对试件三维微观组分(碳棒、碳纤维束和基体)和缺陷(孔洞、分层和裂纹)的智能识别和分割。结果表明:(1) 微观XCT扫描能够高精度表征三维编织C/C复合材料内部组分和缺陷的分布和形态,主要缺陷为相邻纤维束层之间的分层;(2)由于C/C复合材料各微观组分均为碳材料,在CT图像中灰度值相同(或十分接近),难以采用传统阈值算法进行分割;深度学习算法能够有效过滤噪声与伪影并自动精准分割各组分和缺陷,且预测速度比人工图像标注高约两个数量级。本工作对三维编织C/C复合材料后续微细观建模和性能优化奠定了基础。

     

  • 图  1  三维编织C/C复合材料三维四向预制体结构图例

    Figure  1.  Illustration of 3D four-directional preform architecture in 3D braided C/C composite

    图  2  沥青基C/C复合材料制备流程图[26]

    Figure  2.  Flow chart illustrating the preparation process of the pitch-based C/C composites[26]

    图  3  XCT扫描实验

    Figure  3.  XCT scanning experiment

    图  4  三维编织C/C复合材料XCT原始图像

    Figure  4.  XCT Raw image of 3D braided C/C composites

    图  5  基于语义分割的深度学习流程 (左下掩膜图像中的白色为各组分或缺陷,黑色为背景;右上预测结果图像中绿色代表碳棒、蓝色代表碳基体、黄色代表碳纤维束、红色代表缺陷)

    Figure  5.  Process of deep learning based on semantic segmentation (The white areas in the lower left masks represent the components or defects and the black areas are the background; the green, blue, yellow and red areas represent rods, matrix, fiber bundles and defects in the upper rightpredicted results, respectively)

    图  6  碳纤维复材微观CT图像自动识别与分类软件

    Figure  6.  Software flow chart of automatic identification and classification software for carbon fiber composite micro-CT images (AICCT)

    图  7  三维编织C/C复合材料C1试件微观结构模型

    Figure  7.  Microstructure model of 3D braided C/C composite C1 specimen

    图  8  三维编织C/C复合材料C1试件分层现象

    Figure  8.  Delamination in 3D braided C/C composite C1 specimen

    图  9  三维编织C/C复合材料C1试件二维缺陷率曲线

    Figure  9.  2 D defectivity curves of 3D braided C/C composite C1 specimen

    D2 is the two-dimensional defectivity in XY direction

    图  10  三维编织C/C复合材料C1试件切片1缺陷

    Figure  10.  Defects of 3D braided C/C composite C1 specimen in slice 1

    表  1  XCT扫描三维编织C/C复合材料试件和图像参数

    Table  1.   XCT scanned 3D braided C/C composite specimens and image parameters

    SpecimenSDim/mmSRes/μmVXY/VoxelVZ
    /Voxel
    C120×20×2018.271747×17431442
    C220×20×2018.271713×17091307
    C320×20×2018.271737×16981302
    C420×20×2018.271734×17031299
    Notes: SDim is the dimension of specimen, SRes is the scanning resolution of specimen, VXY and VZ are the image sizes in XY directions slice and Z direction.
    下载: 导出CSV

    表  2  三维编织 C/C 复合材料试件深度学习预测结果

    Table  2.   Results of deep learning predication of 3D braided C/C composite specimens

    Specimen VDef/vol% VRod/vol% VFBd/vol% VMat/vol%
    C1 4.72 12.02 50.14 33.12
    C2 5.52 11.25 46.71 36.52
    C3 5.31 11.69 49.51 33.49
    C4 5.01 10.96 48.07 35.96
    Average of predication 5.14 11.48 48.61 34.77
    Design value - 11[6] - -
    Average of threshold 6.83 - - -
    Notes: VDef, VRod, VFBd, VMat represents volume fraction of defects, rods, fiber bundles and matrix, respectively.
    下载: 导出CSV
  • [1] 郭飞, 李彦斌, 张培伟, 等. C/C复合材料销钉准静态和动态剪切性能[J]. 复合材料学报, 2021, 38(05): 1604-1610. doi: 10.13801/j.cnki.fhclxb.20200722.001

    GUO Fei, LI Yanbin, ZHANG Peiwei, et al. Quasi-static and dynamic shear properties of C/C composite pins[J]. Acta Materiae Compositae Sinica, 2021, 38(05): 1604-1610(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200722.001
    [2] LIU P, CAI Y L, DU C L, et al. An elastoplastic mechanical-thermal model for temperature rise simulation of two-dimensional triaxially braided composites under quasi-static loads[J]. Composite Structures, 2023, (306): 116559.
    [3] 林志远, 邢会华, 侯晓, 等. 针刺C/C复合材料高温力学性能试验及本构关系[J]. 固体火箭技术, 2019, 42(01): 98-104.

    LIN Zhiyuan, XING Huihua, HOU Xiao, et al. High-temperature mechanical properties testing and constitutive relation of needle-punched C/C composite[J]. Journal of Solid Rocket Technology, 2019, 42(01): 98-104(in Chinese).
    [4] 耿莉, 成溯, 付前刚, 等. 碳/碳复合材料的激光烧蚀行为与机制[J]. 复合材料学报, 2022, 39(9): 4337-4343.

    GENG Li, CHENG Su, FU Qian'gang, et al. Laser ablation behavior and mechanism of carbon/carbon composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4337-4343(in Chinese).
    [5] 翟兆阳, 曲雅静, 张延超, 等. 碳纤维增强碳基复合材料加工技术研究与探讨[J]. 复合材料学报, 2022, 39(5): 2014-2033.

    ZHAI Zhaoyang, QU Yajing, ZHANG Yanchao, et al. Research and discussion on processing technology of carbon fiber reinforced carbon matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2014-2033(in Chinese).
    [6] 魏连锋, 崔红, 嵇阿琳, 等. 预制体结构对三维编织C/C复合材料本征性能影响研究[J]. 炭素, 2017, (01): 5-9.

    WEI Lianfeng, CUI Hong, JI Alin, et al. Effects of preform structure on mechanical properties of three-dimensional braided carbon/carbon composites[J]. Carbon, 2017, (01): 5-9(in Chinese).
    [7] ZHANG Y F, WU L Z, SUN Y G, et al. CCCs off-axial orientation sensitivity analysis in hole pin-bearing failure via hierarchical multiscale simulation framework[J]. Composite Structures, 2023, (310): 115759.
    [8] 魏坤龙, 史宏斌, 李江, 等. 考虑孔隙缺陷三维编织C/C复合材料渐进损伤及强度预测[J]. 固体火箭技术, 2020, 43(04): 447-457.

    WEI Kunlong, SHI Hongbin, LI Jiang, et al. Progressive damage simulation and tensile strength prediction of three-dimensional braided C/C composites considering void defects[J]. Journal of Solid Rocket Technology, 2020, 43(04): 447-457(in Chinese).
    [9] GUO J H, KE Y N, WU Y Y, et al. Effects of defect sizes at different locations on compressive behaviors of 3D braided composites[J]. Thin-Walled Structures, 2022, (179): 109653.
    [10] 罗忠兵, 曹欢庆, 林莉. 航空复合材料构件R区相控阵超声检测研究进展[J]. 航空制造技术, 2019, 62(14): 67-75.

    LUO Zhongbing, CAO Huanqing, LIN Li. Progress in study of phased array ultrasonic testing on CFRP Radii in aerospace component[J]. Aeronautical Manufacturing Technology, 2019, 62(14): 67-75(in Chinese).
    [11] YANG Z J, REN W Y, SHARMA R, et al. In-situ X-ray computed tomography characterisation of 3D fracture evolution and image-based numerical homogenisation of concrete[J]. Cement and Concrete Composites, 2017, (75): 74-83.
    [12] YANG Z J, QSYMAH A, PENG Y Z, et al. 4D characterisation of damage and fracture behaviour of UHPFRC by in-situ XCT tests[J]. Cement and Concrete Composites, 2020, (106): 103473.
    [13] ZHANG X, YANG Z J, PANG M, et al. Ex-situ micro X-ray computed tomography tests and image-based simulation of UHPFRC beams under bending[J]. Cement and Concrete Composites, 2021, (123): 104216.
    [14] SENCU R M, YANG Z J, WANG Y C, et al. Generation of micro-scale finite element models from synchrotron X-ray CT images for multidirectional carbon fibre reinforced composites[J]. Composites Part A:Applied Science and Manufacturing, 2016, (91): 85-95.
    [15] SINCHUK Y, SHISHKINA O, GUEGUEN M, et al. X-ray CT based multi-layer unit cell modeling of carbon fiber-reinforced textile composites: Segmentation, meshing and elastic property homogenization[J]. Composite Structures, 2022, (298): 116003.
    [16] 刘海龙, 张大旭, 祁荷音, 等. 基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化[J]. 上海交通大学学报, 2020, 54(10): 1074-1083. doi: 10.16183/j.cnki.jsjtu.2019.274

    LIU Hailong, ZHANG Daxu, QI Heyin, et al. Tensile damage evolution of plain weave SiC/SiC composites based on in-situ X-ray CT tests[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1074-1083(in Chinese). doi: 10.16183/j.cnki.jsjtu.2019.274
    [17] 寇宝弘, 卢德宏, 龚文豪, 等. 构型参数及方式对 Al2O3p/高锰钢球形网络复合材料压缩性能的影响[J]. 复合材料学报, 2023, 40(1): 499-509.

    KOU Baohong, LU Dehong, GONG Wenhao, et al. Influence of architecture parameter and mode on compressive properties of an Al2O3p/high manganese steel spherical interpenetrating composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 499-509(in Chinese).
    [18] GENG J, LI Y, XIAO H, et al. Study fatigue crack initiation in TiB2/Al-Cu-Mg composite by in-situ SEM and X-ray microtomography[J]. International Journal of Fatigue, 2021, (142): 105976.
    [19] GARCEA S C, WANG Y, WITHERS P J. X-ray computed tomography of polymer composites[J]. Composites Science and Technology, 2018, (156): 305-319.
    [20] WANG G Q, ZHOU C W, YU J, et al. Mechanical model of needle-punched (NP) carbon/carbon (C/C) composites with isogeometric beams-extended springs at mesoscale[J]. Composite Structures, 2023, (318): 117038.
    [21] LI W D, JIAN Y J, ZHOU X G, et al. In situ tensile damage characterization of C/C composites through X-ray computed tomography and digital volume correlation[J]. Ceramics International, 2023, (49): 10471-10480.
    [22] KOPP R, JOSEPH J, NI X C, et al. Deep Learning Unlocks X-ray Microtomography Segmentation of Multiclass Microdamage in Heterogeneous Materials[J]. Advanced Materials, 2022, (34): 2107817.
    [23] BADRAN A, MARSHALL D, LEGAULT Z, et al. Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning[J]. Journal of Materials Science, 2020, (55): 16273-16289.
    [24] GAO X Y, LEI B, ZHANG Y, et al. Identification of microstructures and damages in silicon carbide ceramic matrix composites by deep learning[J]. Materials Characterization, 2023, (196): 112608.
    [25] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, 2015: 234-241.
    [26] 候晓, 程文, 陈妮, 等. 轴炭棒法制备高性能炭/炭复合材料喉衬织物[J]. 新型炭材料, 2013, 28(05): 355-362. doi: 10.1016/S1872-5805(13)60088-8

    HOU Xiao, CHENG Wen, CHEN Ni, et al. Preparation of a high performance carbon/carbon composite throat insert woven with axial carbon rods[J]. New Carbon Materials, 2013, 28(05): 355-362(in Chinese). doi: 10.1016/S1872-5805(13)60088-8
    [27] 曹翠微, 李贺军, 李照谦, 等. 一种三维四向碳/碳复合材料的微观结构与力学性能[J]. 南京理工大学学报(自然科学版), 2010, 34(05): 713-716.

    CAO Cuiwei, LI Hejun, LI Zhaoqian, et al. Microstructures and mechanical properties of 3D 4-directional carbon/carbon composites[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2010, 34(05): 713-716(in Chinese).
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  188
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-05
  • 修回日期:  2023-10-13
  • 录用日期:  2023-10-26
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回