留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热固性树脂过渡层对聚醚砜树脂基碳纤维复合材料界面性能的增强改性

许培俊 李兆 郭新良 刘荣海 吴道生

许培俊, 李兆, 郭新良, 等. 热固性树脂过渡层对聚醚砜树脂基碳纤维复合材料界面性能的增强改性[J]. 复合材料学报, 2024, 41(7): 3572-3580.
引用本文: 许培俊, 李兆, 郭新良, 等. 热固性树脂过渡层对聚醚砜树脂基碳纤维复合材料界面性能的增强改性[J]. 复合材料学报, 2024, 41(7): 3572-3580.
XU Peijun, LI Zhao, GUO Xinliang, et al. Enhanced modification of interface performance of polyethersulfone resin matrix carbon fiber composite by thermosetting resin transition layer[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3572-3580.
Citation: XU Peijun, LI Zhao, GUO Xinliang, et al. Enhanced modification of interface performance of polyethersulfone resin matrix carbon fiber composite by thermosetting resin transition layer[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3572-3580.

热固性树脂过渡层对聚醚砜树脂基碳纤维复合材料界面性能的增强改性

基金项目: 国家自然科学基金(51978072);陕西省重点研发计划项目(2022GY-371, 2023QCY-LL-26);长安大学中央高校基本科研业务费专项资助(300102312404)。
详细信息
    通讯作者:

    许培俊,博士,教授,博士生导师,主要从事聚合物基复合材料方面的研究。 E-mail:xupeijun@chd.edu.cn

  • 中图分类号: TB332

Enhanced modification of interface performance of polyethersulfone resin matrix carbon fiber composite by thermosetting resin transition layer

Funds: National Natural Science Foundation of China (No.51978072); Key Research and Development Program of Shaanxi (No.2022GY-371, 2023QCY-LL-26); Supported by the Fundamental Research Funds for the Central Universities of Chang'an University (No.300102312404).
  • 摘要: 聚醚砜(PES)树脂具有优良的耐热性能、机械性能以及高温稳定性能,可以用来制备高性能热塑性树脂基碳纤维复合材料。但由于PES树脂与商品级碳纤维界面黏结性较差,导致PES树脂基碳纤维复合材料表现出较差的界面性能。在前期研究中发现,热固性氰酸酯(CE)树脂具有熔融流动性好、与PES树脂熔融温度相近的固化温度,以及与PES树脂有一定相容性的优势。本文采用CE树脂作为PES树脂基碳纤维复合材料的界面过渡层,利用过渡层树脂与碳纤维表面上浆剂的优异结合能力及其与PES树脂形成的良好机械啮合作用,研究热固性树脂过渡层对热塑性树脂基复合材料界面性能的影响。结果表明:引入CE树脂过渡层能够改善PES基碳纤维复合材料的界面黏结性能。与碳纤维(CF)/PES复合材料相比,引入10wt%CE树脂过渡层的CF/(10%CE-PES)-L复合材料弯曲强度提高了18.7%,层间剪切强度提高24.2%,CF/(5%CE-PES)-L复合材料玻璃化温度Tg从166℃提高到179℃。通过在热塑性树脂基体与商品碳纤维之间添加过渡层的方法制备热塑性树脂基碳纤维复合材料,解决了热塑性树脂基碳纤维复合材料界面性能较差的问题,为其在工程化应用方面提供了重要的研究思路和理论依据。

     

  • 图  1  微滴脱黏样品示意图

    Figure  1.  Micro droplet debonding sample

    图  2  碳纤维复合材料制备流程: (a)过渡层法;(b)共混改性法

    Figure  2.  Preparation process of carbon fiber composite: (a)transition layer method; (b) blending modification method

    图  3  碳纤维复合材料弯曲性能

    Figure  3.  Bending performance of carbon fiber composite

    图  4  过渡层法纤维-树脂作用示意图

    Figure  4.  Transition layer method of fiber-resin

    图  5  碳纤维复合材料层间剪切强度

    Figure  5.  Interlayer shear strength of carbon fiber composite

    图  6  碳纤维复合材料储能模量

    Figure  6.  Energy storage modulus of carbon fiber composite

    图  7  碳纤维复合材料损耗模量

    Figure  7.  Loss modulus of carbon fiber composite

    图  8  树脂基体的TG曲线和DTG曲线

    Figure  8.  TG and DTG curves of resin matrix

    图  9  碳纤维复合材料扫描电镜图

    (a-e)为弯曲试样拉伸断裂面;(f)为冲击试样冲击断面。

    Figure  9.  SEM of carbon fiber composites

    (a-e): tensile fracture surfaces of bending specimens; (f): impact fracture surfaces of impact specimens

    图  10  单丝复合材料界面剪切强度和扫描电镜图

    Figure  10.  Shear strength and SEM of monofilament interface

  • [1] COLLINSON M G, SWAIT T J, BOWER M P, et al. Development and implementation of direct electric cure of plain weave CFRP composites for aerospace[J]. Composites Part A:Applied Science and Manufacturing, 2023, 172: 107615. doi: 10.1016/j.compositesa.2023.107615
    [2] SHUBHAM M, ASHISH D, SANJAY A, et al. The Effect of Chopped Carbon Fiber on Morphology, Electromagnetic, and Mechanical Properties of Glass/Epoxy Composites for Aerospace Application[J]. Transactions of the Indian Institute of Metals. 2023: 1-12.
    [3] HIREMATH N, YOUNG S, GHOSSEIN H, et al. Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications[J]. Composites Part B:Engineering, 2020, 198: 108156. doi: 10.1016/j.compositesb.2020.108156
    [4] MENG F, MCKECHNIE J, TURNER T, et al. Environmental aspects of use of recycled carbon fibre composites in automotive applications[J]. Environmental Science & Technology, 2017, 51(21): 12727-12736.
    [5] KE H, ZHAO L, ZHANG X, et al. Performance of high-temperature thermosetting polyimide composites modified with thermoplastic polyimide[J]. Polymer Testing, 2020, 90: 106746. doi: 10.1016/j.polymertesting.2020.106746
    [6] ZHAO Z, ZHANG J, BI R, et al. Study on the Overmolding Process of Carbon-Fiber-Reinforced Poly (Aryl Ether Ketone) (PAEK)/Poly (Ether Ether Ketone) (PEEK) Thermoplastic Composites[J]. Materials, 2023, 16(12): 4456. doi: 10.3390/ma16124456
    [7] BARBOSA L C M, BORTOLUZZI D B, and ANCELOTTI A C. Analysis of fracture toughness in mode II and fractographic study of composites based on Elium® 150 thermoplastic matrix[J]. Composites Part B:Engineering, 2019, 175: 107082. doi: 10.1016/j.compositesb.2019.107082
    [8] KANOKPORN T-U, HUMZA M, XIAOMENG Z, et al. Enhancing interlaminar fracture toughness of woven carbon fibre/epoxy composites with engineering thermoplastic and carbon-based nanomaterials[J]. Composite Structures, 2021, 282: 115073.
    [9] KHAN M I, UMAIR M, HUSSAIN R, et al. Investigation of impact properties of para-aramid composites made with a thermoplastic-thermoset blend[J]. Journal of Thermoplastic Composite Materials, 2021, 36(2): 866-866.
    [10] MATADI BOUMBIMBA R, COULIBALY M, KHABOUCHI A, et al. Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures[J]. Composite Structures, 2017, 160: 939-951. doi: 10.1016/j.compstruct.2016.10.127
    [11] NASH N H, PORTELA A, BACHOUR-SIREROL C I, et al. Effect of environmental conditioning on the properties of thermosetting- and thermoplastic-matrix composite materials by resin infusion for marine applications[J]. Composites Part B:Engineering, 2019, 177: 107271. doi: 10.1016/j.compositesb.2019.107271
    [12] SONNENFELD C, MENDIL-JAKANI H, AGOGUé R, et al. Thermoplastic/thermoset multilayer composites: A way to improve the impact damage tolerance of thermosetting resin matrix composites[J]. Composite Structures, 2017, 117: 298-305.
    [13] ZWEIFEL L and BRAUNER C. Investigation of the interphase mechanisms and welding behaviour of fast-curing epoxy based composites with co-cured thermoplastic boundary layers[J]. Composites Part A:Applied Science and Manufacturing, 2020, 139: 106120. doi: 10.1016/j.compositesa.2020.106120
    [14] DAI Z, ZHANG B, SHI F, et al. Chemical interaction between carbon fibers and surface sizing[J]. Journal of Applied Polymer Science, 2012, 124(3): 2127-2132. doi: 10.1002/app.35226
    [15] 陈平, 唐忠朋, 王秀杰, 等. 环氧树脂与氰酸酯共固化物的结构与性能. 材料研究学报[J]. 2004, 3: 265-272.

    CHENG Ping, TANG Zhongpeng, WANG Xiujie, et al. Structure and property of co-curing reaction product for epoxy and cyanate resin system[J]. Chinese Journal of Materials Research, 2004, 18(3): 265-272 (in Chinese).
    [16] ZHENG L, LIAO G X, and JIAN X G. Preparation of Solution Impregnated Continuous Carbon Fibre Reinforced Poly (Phthalazinone Ether Sulfone Ketone) Composites[J]. Advanced Composites Letters. 2009, 18 (1): 096369350901800101.
    [17] CHUNZHENG P. Improving the interfacial property of carbon fiber/PI resin composite by grafting modification of carbon fiber surface[J]. Surface and Interface Analysis, 2018, 50(6): 628-633. doi: 10.1002/sia.6439
    [18] LI C, DONG Y, YUAN X, et al. Two-step method to realize continuous multi-wall carbon nanotube grafted on the fibers to improve the interface of carbon fibers/epoxy resin composites based on the Diels-Alder reaction[J]. Carbon, 2023, 212: 118131. doi: 10.1016/j.carbon.2023.118131
    [19] MA J, JIANG L, DAN Y, et al. Study on the inter-laminar shear properties of carbon fiber reinforced epoxy composite materials with different interface structures[J]. Materials & Design, 2022, 214: 110417.
    [20] PAN F, JIANG X, SUN S, et al. Design and construction for the interface between carbon fiber and epoxy via vinyl alkoxysilane modification[J]. Composites Part A:Applied Science and Manufacturing, 2022, 162: 107148. doi: 10.1016/j.compositesa.2022.107148
    [21] YAO Z, WANG C, QIN J, et al. Interfacial improvement of carbon fiber/epoxy composites using one-step method for grafting carbon nanotubes on the fibers at ultra-low temperatures[J]. Carbon, 2020, 164: 133-142. doi: 10.1016/j.carbon.2020.03.060
    [22] ZHANG Z, LIU Y, HUANG Y, et al. The effect of carbon-fiber surface properties on the electron-beam curing of epoxy-resin composites[J]. Composites Science and Technology, 2002, 62(3): 331-337. doi: 10.1016/S0266-3538(01)00222-6
    [23] MA S, LI H, FEI J, et al. Flexible-rigid scalable structures for trans-scale interface reinforcement of carbon fiber/phenolic composites: Effect on properties[J]. Composites Part B:Engineering, 2023, 258: 110703. doi: 10.1016/j.compositesb.2023.110703
    [24] MENG X, LI J, CUI H, et al. Dynamic shear failure behavior of the interfaces in carbon fiber/ZnO nanowire/epoxy resin hierarchical composites[J]. Composites Science and Technology, 2022, 221: 109284. doi: 10.1016/j.compscitech.2022.109284
    [25] WU D, SONG S, HAN Y, et al. Design of carbon fiber with nano accuracy for enrichment interface[J]. Composites Science and Technology, 2022, 230: 109734. doi: 10.1016/j.compscitech.2022.109734
    [26] WU D, YAO Z, SUN X, et al. Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites[J]. Chemical Engineering Journal, 2022, 429: 132449. doi: 10.1016/j.cej.2021.132449
    [27] TOLDY A, SZLANCSIK Á, and SZOLNOKI B. Reactive flame retardancy of cyanate ester/epoxy resin blends and their carbon fibre reinforced composites[J]. Polymer Degradation and Stability, 2016, 128: 29-38. doi: 10.1016/j.polymdegradstab.2016.02.015
    [28] KIM D S and LEE S K. Effect of blending polyethersulfone on the cure kinetics and physical properties of dicyanate resin[J]. Journal of Applied Polymer Science, 2001, 82(8): 1952-1962. doi: 10.1002/app.2041
    [29] 中华人民共和国国家质量监督检验检疫总局. 纤维增强塑料弯曲性能试验方法: GB/T 1449-2005 [S]. 北京: 中国标准出版社, 2005.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Fiber-reinforced plastic composites-Determination of flexural properties: GB/T 1449-2005 [S]. Beijing: China Standards Press, 2005(in Chinese).
    [30] 中华人民共和国建材行业标准. 纤维增强塑料 短梁法测定层间剪切强度: JC/T 773-2010 [S]. 北京: 中国标准出版社, 2010.

    The People's Republic of China building materials industry standards. Fiber-reinforced plastics composites-Determination of apparent interlaminar shear strength by short-beam method: JC/T 773-2010 [S]. Beijing: China Standards Press, 2010(in Chinese).
    [31] 郭朝钰. 张力条件下聚丙烯腈初生纤维的粘弹响应[D]. 2021. 北京化工大学, 2022.

    GUO Chaoyu. Viscoelastic response of polyacrylonitrile primary fibers under tension conditions [D]. Beijing University of Chemical Technology, 2022(in Chinese).
  • 加载中
图(10)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  69
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-11-12
  • 录用日期:  2023-11-26
  • 网络出版日期:  2024-01-02
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回