留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超材料拓展蜂窝吸波性能设计方法

景致 张澎 张健 郭策安

景致, 张澎, 张健, 等. 基于超材料拓展蜂窝吸波性能设计方法[J]. 复合材料学报, 2024, 41(7): 3791-3797.
引用本文: 景致, 张澎, 张健, 等. 基于超材料拓展蜂窝吸波性能设计方法[J]. 复合材料学报, 2024, 41(7): 3791-3797.
JING Zhi, ZHANG Peng, ZHANG Jian, et al. A method of enhancing honeycomb absorbing performance based on metamaterial[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3791-3797.
Citation: JING Zhi, ZHANG Peng, ZHANG Jian, et al. A method of enhancing honeycomb absorbing performance based on metamaterial[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3791-3797.

基于超材料拓展蜂窝吸波性能设计方法

详细信息
    通讯作者:

    景致,高级工程师,硕士,从事隐身材料/结构相关研究工作 E-mail: 344497851@qq.com

  • 中图分类号: V259;TB332

A method of enhancing honeycomb absorbing performance based on metamaterial

  • 摘要: 吸波蜂窝兼备轻质、承载、吸波特点,被广泛用于隐身结构设计,但其存在低频吸波性能相对较弱的问题。本文采用方形开口谐振环单元提出了一种具有电磁波强吸收性能的超材料设计方法,并将其应用于吸波蜂窝电磁性能改性设计,实现了宽频吸波性能的显著提升。首先设计方形开口谐振环单元,进行了电磁散射特性随单元外形参量变化研究,通过仿真探究了介质层厚度、方环宽度、开口宽度和外框边长等4个主要设计参量对超材料吸波性能的影响,分析了电磁吸收峰出现的频点和强度随单元外形变化的规律,提出了一种具有窄带强吸波特性的方案。然后将方形开口谐振环超材料与吸波蜂窝相结合,提出了一种超材料吸波蜂窝的设计方法。研究发现,所设计的超材料吸波蜂窝相比普通吸波蜂窝在1~10 GHz反射损耗平均提升了4.4 dB,吸波蜂窝的吸波性能得到显著提升。

     

  • 图  1  方形开口谐振环单元结构

    Figure  1.  Square split ring resonator unit structure

    图  2  “元胞”边界条件

    Figure  2.  The “unit cell” boundary condition

    图  3  不同介质层厚度方形开口谐振环(SSRR)超材料的反射损耗

    Figure  3.  Reflection loss of square split ring resonator (SSRR) metamaterial with different dielectric layer thickness

    图  4  不同外框边长SSRR超材料的反射损耗

    Figure  4.  Reflection loss of SSRR metamaterial with different ring length

    图  5  不同方框宽度SSRR超材料的反射损耗

    Figure  5.  Reflection loss of SSRR metamaterial with different ring width

    图  6  不同开口宽度SSRR超材料的反射损耗

    Figure  6.  Reflection loss of SSRR metamaterial with different opening width

    图  7  超材料吸波蜂窝与普通吸波蜂窝的反射损耗

    Figure  7.  Reflection loss of the metamaterial absorbing honeycomb and ordinary absorbing honeycomb

  • [1] 邢丽英, 李亚锋, 陈祥宝. 先进复合材料在航空装备发展中的地位与作用[J]. 复合材料学报, 2022, 39(9): 4179-4186.

    XING L Y, LI Y F, CHEN X B. Status and role of the advanced composite materials in the development of aviation equipment[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4179-4186 (in Chinese).
    [2] WANG P, ZHANG Y, CHEN H, et al. Broadband radar absorption and mechanical behaviors of bendable over-expanded honeycomb panels[J]. Composites Science and Technology, 2018, 162: 33-48. doi: 10.1016/j.compscitech.2018.04.015
    [3] 邢孟达, 马向雨, 宫元勋, 等. A型蒙皮复合蜂窝结构设计及其吸波性能[J]. 复合材料学报, 2022, 39(3): 1180-1185.

    XING M D, MA X Y, GONG Y X, et al. Design and wave absorbing properties of honeycomb with A-type skin[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1180-1185 (in Chinese).
    [4] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Sov Phys Usp, 1968, 10(4): 509-514. doi: 10.1070/PU1968v010n04ABEH003699
    [5] 崔铁军. 电磁超材料——从等效媒质到现场可编程系统[J]. 中国科学:信息科学, 2020, 50(10): 1427-1461. doi: 10.1360/SSI-2020-0123

    CUI T J. Electromagnetic metamaterials—from effective media to field pro-grammable systems[J]. SCIENTIA SINICA Informationis, 2020, 50(10): 1427-1461 (in Chinese). doi: 10.1360/SSI-2020-0123
    [6] 李岩, 金亚斌. 超构材料波动功能调控研究进展[J]. 复合材料学报, 2022, 39(9): 4259-4273.

    LI Y, JIN Y B. Research progress on metamaterials for wave function regulation[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4259-4273 (in Chinese).
    [7] PHAM T L , XUAN K B , TUNG B S , et al. Origami-based stretchable bi-functional metamaterials: reflector and broadband absorber[J]. Journal of Physics D: Applied Physics, 2021, 54(16): 165111.
    [8] HAO L, YONG Z C. Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures[J]. Modern Physics Letters B, 2017, 31(6): 1750231.
    [9] 张泽奎, 王东红, 王蓬, 等. 基于电阻膜与超材料的超薄宽频吸波体设计[J]. 功能材料, 2018, 49(4): 219-222.

    ZHANG Z K, WANG D H, WANG P, et al. Design of an ultrathin and wideband absorber based on resistance film and metamaterial[J]. Functional Materials, 2018, 49(4): 219-222 (in Chinese).
    [10] 沈杨, 王甲富, 张介秋, 等. 基于超材料的雷达吸波材料研究进展[J]. 空军工程大学学报(自然科学版), 2018, 19(6): 39-47.

    SHEN Y, WANG J F, ZHANG J Q, et al. Research progresses in radar absorbing materials based on meta-material[J]. Journal of Air Force Engineering University (Natural Science Edition), 2018, 19(6): 39-47 (in Chinese).
    [11] 黄金国, 郭宇, 赵治亚, 等. 基于有源超材料的可调超薄雷达吸波体研究[J]. 材料工程, 2019, 47(6): 77-81.

    HUANG J G, GUO Y, ZHAO Z Y, et al. Investigation on tunable ultra-thin radar absorber based on active metamaterial[J]. Journal of Materials Engineering, 2019, 47(6): 77-81 (in Chinese).
    [12] ELAKKIYA A, SANKARARAJAN R, SREEJA B S. Optically transparent terahertz triple-band and dual-band metamaterial absorber[J]. Circuit world, 2022, 48(1): 126-131. doi: 10.1108/CW-05-2020-0083
    [13] 马瑶, 王建宝, 石立华, 等. 一款透明柔性超材料宽频微波吸收器[J]. 复合材料学报, 2022, 39(4): 1601-1609.

    MA Y, WANG J B, SHI L H, et al. A wideband, transparent and flexible microwave metamaterial absorber[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1601-1609 (in Chinese).
    [14] PENDRY J B, et. al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084. doi: 10.1109/22.798002
    [15] SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187. doi: 10.1103/PhysRevLett.84.4184
    [16] 杨芷若, 黄玉兰. 基于新型开口谐振环结构双工器的设计[J]. 中国新通信, 2021, 02: 246-247.

    YANG Z R, HUANG Y L. Design of a duplexer based on a new split resonant ring structure[J]. China New Telecommunications, 2021, 02: 246-247 (in Chinese).
    [17] IDRUS I N, FARUQUE M R, ABDULLAH S, et al. An octagonal split ring resonator-based double negative metamaterial for S-, X- and Ku-band applications[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236(11): 2269-2280.
    [18] XU F, LIN L, FANG J, et al. High sensitivity dual-band perfect plasmon absorber based on graphene split-ring-resonator[J]. Diamond and Related Materials, 2022, 123: 108789. doi: 10.1016/j.diamond.2021.108789
    [19] WU B, LIU Z Q, DU G Z, et al. Ultra-broadband electromagnetic wave absorber based on split-ring resonators[J]. Journal of the Optical Society of America B-Optical Physics, 2019, 36(12): 3573-3578. doi: 10.1364/JOSAB.36.003573
    [20] FUKADA K, TAJIMA T, HAYASHI K et al. Thermally degradable split-ring resonator made on a gelatin substrate with enhanced dielectric and conductive properties[J]. ACS Applied Electronic Materials, 2023, 5(6): 3515-3520. doi: 10.1021/acsaelm.3c00539
    [21] 丛茂林, 廖斌. 基于方形开口谐振环的无线激励微波微等离子体阵列源的研究[J]. 真空电子技术, 2023, 01: 68-73.

    CONG M L, LIAO B. Research on wireless exciting microwave micro-plasma array source based on square split resonant ring[J]. Vacuum Electronics, 2023, 01: 68-73 (in Chinese).
    [22] SAMANTA S K, PRADHAN R, SYAM D. Theoretical approach to verify the resonance frequency of a square split ring resonator[J]. Journal of the Optical Society of America B, 2021, 38(10): 2887-2897. doi: 10.1364/JOSAB.428743
    [23] KARTHIE S, ZUVAIRIYA P J, YOGESHWARI D, et al. Compact dual-mode microstrip bandpass filter based on slotted square patch resonator[J]. Microelectronics International, 2021, 39(2): 49-57,
    [24] 戴蕊桧. 等效媒质理论在周期结构复合材料中的研究与应用[D]. 电子科技大学, 2018.

    DAI R H. Research and application of the equivalent medium theory in periodic structure composite materials. [D]. University of Electronic Science and Technology of China, 2018 (in Chinese).
    [25] SALISBURY W W. Absorbent body for electromagnetic waves: US2599944 [P/OL]. 1952-6-10[2023-10-10]. http//www. google. co. in/patents/ US2599944.
    [26] 王一帆, 朱琳, 韩露, 等. 电磁吸波材料的研究现状与发展趋势[J]. 复合材料学报, 2023, 40(1): 1-12.

    WANG Yifan, ZHU Lin, HAN Lu, et al. Research status and development trend of electromagnetic absorbing materials[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 1-12 (in Chinese).
    [27] 吕丽华, 王荣蕊, 刘文迪, 等. 蜂窝状三维整体机织结构型吸波复合材料的设计、制备与性能[J]. 复合材料学报, 2023, 40(3): 1477-1483.

    LU L H, WANG R R, LIU W D, et al. Design, preparation and properties of honeycomb 3D integral woven structure microwave absorbing composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1477-1483(in Chinese).
    [28] 赵彦凯, 毕松, 侯根良, 等. 轻质蜂窝夹层复合材料的制备及其吸波性能研究[J]. 化工新型材料, 2021, 49(5): 93-101.

    ZHAO Y K, BI S, HOU G L, et al. Preparation and microwave absorption property of lightweight honeycomb sandwich composite[J]. New Chemical Materials, 2021, 49(5): 93-101(in Chinese).
  • 加载中
图(7)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  41
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2024-01-07
  • 录用日期:  2024-01-16
  • 网络出版日期:  2024-02-24
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回