留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯纤维珊瑚海水混凝土循环受压试验及应力-应变本构关系

陈宗平 覃钦泉 梁莹 周济

陈宗平, 覃钦泉, 梁莹, 等. 聚丙烯纤维珊瑚海水混凝土循环受压试验及应力-应变本构关系[J]. 复合材料学报, 2023, 42(0): 1-13.
引用本文: 陈宗平, 覃钦泉, 梁莹, 等. 聚丙烯纤维珊瑚海水混凝土循环受压试验及应力-应变本构关系[J]. 复合材料学报, 2023, 42(0): 1-13.
CHEN Zongping, QIN Qinquan, LIANG Ying, et al. Cyclic compression test and stress-strain constitutive relationship of polypropylene fiber coral seawater concrete[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Zongping, QIN Qinquan, LIANG Ying, et al. Cyclic compression test and stress-strain constitutive relationship of polypropylene fiber coral seawater concrete[J]. Acta Materiae Compositae Sinica.

聚丙烯纤维珊瑚海水混凝土循环受压试验及应力-应变本构关系

基金项目: 国家自然科学基金(51578163);中央引导地方科技发展资金项目(桂科 ZY21195010);八桂学者专项研究经费项目([2019]79号);广西科技基地和人才专项(AD210750031);广西大学对口支援学科建设项目(2023N01)
详细信息
    通讯作者:

    梁莹,硕士,高级工程师,研究方向为再生混凝土结构、海洋及近海混凝土结构 E-mail:liangying@unn.edu.cn

  • 中图分类号: TU528

Cyclic compression test and stress-strain constitutive relationship of polypropylene fiber coral seawater concrete

Funds: The National Natural Science Foundation of China (51578163); Central Leading Local Science and Technology Development Fund Project (ZY211195010); Bagui Scholars Program ([2019]79); Guangxi Science and Technology Base and Talent Special Project (Guike AD21075031); Counterpart Aid Project for Discipline Construction from Guangxi University (2023N01)
  • 摘要: 为研究聚丙烯纤维珊瑚海水混凝土(PPF/CAC)在循环受压荷载作用下的力学行为,以聚丙烯纤维体积分数和加载方式为变化参数,设计了20个圆柱体试件进行单轴受压以及单轴循环受压试验。试验观察了PPF/CAC的破坏形态,获取了应力-应变全曲线及峰值应力应变、塑性应变等重要指标,深入分析了PPF/CAC在单轴循环受压作用下的应力-应变行为和损伤演化。结果表明:与单调加载相比,循环加载试件的强度退化了1.21%~3.67%,聚丙烯纤维能有效延缓强度退化;聚丙烯纤维体积分数为0.15%时珊瑚混凝土的峰值应力和峰值应变增幅最大,分别为10.45%和6.45%,改性效果最好;此外,聚丙烯纤维体积分数的增加可显著降低塑性应变的积累,提高弹性刚度比。本文根据试验结果定义了滞回曲线的四个特征点:卸载点、公共点、残余点和终点,并建立了残余应变、公共点应变和终点应变与卸载应变的关系。最后,提出了PPF/CAC在循环荷载作用下的应力-应变本构方程和损伤本构模型,且基于损伤演化规律简化后的应力-应变本构方程可以有效地预测其在循环荷载作用下的应力-应变行为。

     

  • 图  1  投料顺序图

    Figure  1.  Diagram of feeding sequence

    图  2  珊瑚骨料外观

    Figure  2.  Coral aggregate appearance

    图  3  坍落度测量

    Figure  3.  Slump measurement

    图  4  加载装置

    Figure  4.  Loading device

    图  5  加载制度示意图

    Figure  5.  Loading regime diagram

    图  6  PFCAC试件的观测

    Figure  6.  Observation of PFCAC specimen

    图  7  典型PPF/CAC试件破坏形态

    Figure  7.  Failure pattern of typical PPF/CAC specimen

    图  8  PPF/CAC试件应力-应变曲线

    Figure  8.  Stress-strain curves of PPF/CACspecimens

    图  9  每组PPF/CAC试件平均应力-应变曲线

    Figure  9.  Average stress-strain curve of each group of PPF/CAC specimens

    图  10  PPF/CAC循环受压全过程示意图

    Figure  10.  The whole process diagram of PPF/CAC specimen under cyclic compression

    图  11  PPF/CAC试件峰值应变

    Figure  11.  Peak strain of PPF/CAC specimens

    图  12  PPF/CAC试件峰值应力

    Figure  12.  Peak stress of PPF/CAC specimens

    图  13  PPF/CAC试件刚度退化

    Figure  13.  Stiffness degradation of PPF/CAC specimens

    图  14  PPF/CAC试件残余应变xp与卸载应变xu关系

    Figure  14.  Relation between residual strain xp and unloading strain xu of PPF/CAC specimens

    图  15  PPF/CAC试件公共点应变xc与残余应变xu的关系

    Figure  15.  Relationship between common point strain xc and residual strain xu of PPF/CAC specimens

    图  16  PPF/CAC试件终点应变xe与残余应变xu的关系

    Figure  16.  Relationship between terminal strain xe and residual strain xu of PPF/CAC specimens

    图  17  PPF/CAC归一化应力-应变曲线及模型验证

    Figure  17.  Normalized stress-strain curves of PPF/CAC and model validation

    图  18  PPF/CAC试件在循环加载下的损伤指数变化

    Figure  18.  Change of damage index of PPF/CAC specimens under cyclic loading

    图  19  PPF/CAC试件损伤指数df的拟合结果

    Figure  19.  Fitting result of damage index df of PPF/CAC specimens

    图  20  参数ab的拟合结果

    Figure  20.  Fitting results of parameters a and b

    表  1  试件配合比及设计参数(kg/m3)

    Table  1.   Sample fit ratio and design parameters

    Specimen numberCementCoarse aggregateFine aggregateWaterwater reducerVPPF/%
    0%PPF/CAC53067275325210.6-
    0.1%PPF/CAC53067275325210.60.10
    0.15%PPF/CAC53067275325210.60.15
    0.2%PPF/CAC53067275325210.60.20
    0.25%PPF/CAC53067275325210.60.25
    Notes: VPPF—Polypropylene fiber volume content.
    下载: 导出CSV

    表  2  珊瑚骨料的物理性能

    Table  2.   Mechanical and physical parameters of coral aggregate

    Coral aggregate Bulk density /(kg·m−3) Performance density/(kg·m−3) Water content/% Water absorption/%
    1 h 24 h
    Coarse aggregate 878 1846 2.3 8.5 9.6
    Fine aggregate 1285 2701 2.4 3.45 3.70
    下载: 导出CSV

    表  3  聚丙烯纤维基本物理性能

    Table  3.   Basic physical properties of polypropylene fibers

    Physical property PPF Fiber appearance
    d/mm 0.048
    l/mm 19
    Tensile strength/MPa >550
    Density/(g·cm−3) 0.91
    Elasticity modulus/GPa 6.5
    Elongation at break/% 15
    Notes: d—Diameter of fiber; l—Length of fiber.
    下载: 导出CSV

    表  4  经典混凝土残余应变计算公式

    Table  4.   Residual strain calculation formula of classical concrete

    Constitutive model name Residual strain formula
    Karsan[27] model $ {x_{\text{p}}} = 0.145 x_{\text{u}}^2 + 0.127{x_{\text{u}}} $
    Bahn and Hsu[28] model $ {x_{\text{p}}} = {c_{\text{p}}}{({x_{\text{u}}})^{{n_{\text{p}}}}} $
    Biao Li[16] Linear function model $ {x_{\text{p}}} = G{x_{\text{u}}} + H $
    Notes: xp—Remanent strain; xu—Unloading strain; cp, np, G and H—Model parameter.
    下载: 导出CSV

    表  5  i次循环荷载下PPF/CAC试件的损伤指数

    Table  5.   Damage index of PPF/CAC specimens under i cycle load

    Specimendf4df5df6df7df8df9df10df11df12df13df14df15
    0%PPF/CAC0.3500.5560.6450.7230.7590.7960.8150.8340.8560.8670.8810.892
    0.1%PPF/CAC0.3100.4710.5680.6420.6710.7390.7610.7840.8020.8110.8250.821
    0.15%PPF/CAC0.2870.4160.5260.5970.6370.6710.7100.7250.7460.7590.7740.789
    0.2%PPF/CAC0.2430.3640.4680.5440.5760.6240.6550.6670.6860.7140.7250.736
    0.25%PPF/CAC0.1840.3020.3900.4460.5130.5700.6270.6560.6670.7000.7030.704
    Notes: The data in the table are the average values of the three specimens in each group, dfi—Damage index under i cycle load.
    下载: 导出CSV
  • [1] Yang S, Yang C, Huang M, et al. Study on bond performance between FRP bars and seawater coral aggregate concrete[J]. Construction and Building Materials, 2018, 173: 272-288. doi: 10.1016/j.conbuildmat.2018.04.015
    [2] Wang Q, Li P, Tian Y, et al. Mechanical properties and microstructure of Portland cement concrete prepared with coral reef sand[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(5): 996-1001. doi: 10.1007/s11595-016-1481-x
    [3] Zhou W, Feng P, Lin H. Constitutive relations of coral aggregate concrete under uniaxial and triaxial compression[J]. Construction and Building Materials, 2020, 251: 118957. doi: 10.1016/j.conbuildmat.2020.118957
    [4] Wang Y, Shui Z, Gao X, et al. Utilizing coral waste and metakaolin to produce eco-friendly marine mortar: Hydration, mechanical properties and durability[J]. Journal of Cleaner Production, 2019, 219: 763-774. doi: 10.1016/j.jclepro.2019.02.147
    [5] 蔡新光, 赵青, 陈惠苏. 珊瑚混凝土研究现状[J]. 硅酸盐学报, 2021, 49(08): 1753-1764. doi: 10.14062/j.issn.0454-5648.20200951

    Cai X G, Zhao Q, Chen H. Research status of coral concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(08): 1753-1764 (in Chinese). doi: 10.14062/j.issn.0454-5648.20200951
    [6] Arumugam R A, Ramamurthy K. Study of compressive strength characteristics of coral aggregate concrete[J]. Magazine of Concrete Research, 1996, 48(176): 141-148. doi: 10.1680/macr.1996.48.176.141
    [7] Liu B , Guo J , Wen X , et al. Study on flexural behavior of carbon fibers reinforced coral concrete using digital image correlation[J]. Construction and Building Materials, 2020, 242: 117968.
    [8] Yoo D Y, Banthia N. Impact resistance of fiber-reinforced concrete–A review[J]. Cement and Concrete Composites, 2019, 104: 103389. doi: 10.1016/j.cemconcomp.2019.103389
    [9] Huang Y, Li X, Lu Y, et al. Effect of mix component on the mechanical properties of coral concrete under axial compression[J]. Construction and Building Materials, 2019, 223: 736-754. doi: 10.1016/j.conbuildmat.2019.07.015
    [10] 陈宗平, 周济, 陈宇良, 等. 珊瑚粗骨料海水混凝土力学性能试验研究[J]. 应用力学学报, 2020, 37(05): 1999-2006+2319-2320. doi: 10.11776/cjam.37.05.B090

    Chen Z P, Zhou J, Chen Y L, et al. Experimental Study on Mechanical Properties of seawater concrete with coarse coral aggregate[J]. Chinese Journal of Applied Mechanics, 2020, 37(05): 1999-2006+2319-2320(in Chinese). doi: 10.11776/cjam.37.05.B090
    [11] 熊祖菁. 掺入聚丙烯纤维珊瑚混凝土的力学性能及微观结构研究[D]. 广西: 桂林理工大学, 2014.

    Xiong Z Q. Study on Mechanical Properties and Microstructure of coral Concrete Mixed with polypropylene fiber [D]. Guangxi: Guilin University of Technology, 2014.
    [12] 王磊, 熊祖菁, 刘存鹏, 等. 掺入聚丙烯纤维珊瑚混凝土的力学性能研究[J]. 混凝土, 2014, (07): 96-99. doi: 10.3969/j.issn.1002-3550.2014.07.026

    Wang L, Xiong Z Q, Liu C P, et al. Study on Mechanical Properties of coral Concrete Mixed with polypropylene fiber[J]. Concrete, 2014, (07): 96-99(in Chinese). doi: 10.3969/j.issn.1002-3550.2014.07.026
    [13] 易金, 刘超, 王磊. 聚丙烯纤维增强珊瑚混凝土抗冲击性能试验研究[J]. 科学技术与工程, 2019, 19(04): 244-248. doi: 10.3969/j.issn.1671-1815.2019.04.039

    Yi J, Liu C, Wang L. Experimental study on impact resistance of polypropylene fiber reinforced coral concrete[J]. Science Technology and Engineering, 2019, 19(04): 244-248(in Chinese). doi: 10.3969/j.issn.1671-1815.2019.04.039
    [14] Deng F, Chi Y, Xu L, et al. Constitutive behavior of hybrid fiber reinforced concrete subject to uniaxial cyclic tension: Experimental study and analytical modeling[J]. Construction and Building Materials, 2021, 295: 123650. doi: 10.1016/j.conbuildmat.2021.123650
    [15] Bahn B Y, Hsu C T T. Stress-strain behavior of concrete under cyclic loading[J]. Materials Journal, 1998, 95(2): 178-193.
    [16] Li B, Xu L, Chi Y, et al. Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression[J]. Construction and Building Materials, 2017, 140: 109-118. doi: 10.1016/j.conbuildmat.2017.02.094
    [17] 徐礼华, 李长宁, 李彪, 等. 循环受压状态下钢纤维混凝土一维弹塑性损伤本构模型研究[J]. 土木工程学报, 2018, 51(11): 77-87. doi: 10.15951/j.tmgcxb.2018.11.006

    Xu L H, Li C N, Li B, et al. One-dimensional elastoplastic damage constitutive model of steel fiber reinforced concrete under cyclic compression[J]. China Civil Engineering Journal, 2018, 51(11): 77-87 (in Chinese). doi: 10.15951/j.tmgcxb.2018.11.006
    [18] Xu L, Li B, Ding X, et al. Experimental investigation on damage behavior of polypropylene fiber reinforced concrete under compression[J]. International Journal of Concrete Structures and Materials, 2018, 12(1): 1-20. doi: 10.1186/s40069-018-0237-8
    [19] T/CECS 694-2020, 珊瑚骨料混凝土应用技术规程[S]. 北京: 中国计划出版社, 2020.

    T/CECS 694-2020, Technical specification for coral aggregate concrete[S]. Beijing: China Planning Press, 2020 (in Chinese).
    [20] GB/T 17431.2-2010, 轻集料及其试验方法 第2部分: 轻集料试验方法[S]. (in Chinese

    Lightweight aggregates and its test methods. Part 2: Test methods for Lightweight aggregates[S]. (in Chinese)
    [21] 陈宇良, 王琦, 梁鑫, 等. 多组合混杂纤维改性再生混凝土循环受压性能试验[J]. 复合材料学报, 2023, 40(08): 4745-4756.

    Chen Y L, Wang Q, Liang X, et al. Cyclic compression Performance Test of multi-combination hybrid fiber modified recycled concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(08): 4745-4756 (in Chinese).
    [22] Hu X, Lu Q, Xu Z, et al. Compressive stress-strain relation of recycled aggregate concrete under cyclic loading[J]. Construction and Building Materials, 2018, 193: 72-83. doi: 10.1016/j.conbuildmat.2018.10.137
    [23] Yan H, Sun W, Chen H. The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete[J]. Cement and Concrete Research, 1999, 29(3): 423-426. doi: 10.1016/S0008-8846(98)00235-X
    [24] Fallah S, Nematzadeh M. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume[J]. Construction and building materials, 2017, 132: 170-187. doi: 10.1016/j.conbuildmat.2016.11.100
    [25] Das C S, Dey T, Dandapat R, et al. Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete[J]. Construction and Building Materials, 2018, 189: 649-659. doi: 10.1016/j.conbuildmat.2018.09.036
    [26] Carreira D J, Chu K H. Stress-strain relationship for plain concrete in compression[C]//Journal Proceedings. 1985, 82(6): 797-804.
    [27] Karsan I D, Jirsa J O. Behavior of concrete under compressive loadings[J]. Journal of the Structural Division, 1969, 95(12): 2543-2564. doi: 10.1061/JSDEAG.0002424
    [28] Bahn B Y, Hsu C T T. Stress-strain behavior of concrete under cyclic loading[J]. Materials Journal, 1998, 95(2): 178-193.
    [29] Lemaitre J, Chaboche J L. Mechanics of solid materials[M]. Cambridge university press, 1994.
    [30] Krahl P A, Gidrão G M S, Carrazedo R. Cyclic behavior of UHPFRC under compression[J]. Cement and Concrete Composites, 2019, 104: 103363. doi: 10.1016/j.cemconcomp.2019.103363
  • 加载中
计量
  • 文章访问数:  124
  • HTML全文浏览量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20
  • 修回日期:  2023-11-14
  • 录用日期:  2023-12-06
  • 网络出版日期:  2023-12-21

目录

    /

    返回文章
    返回